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Managing Real-Time Systems

A real-time system is one in which it is possible to predict and control
when computations take place. In real-time applications, the correct-
ness of a computation depends not only upon its results, but also
upon the time at which its outputs are generated. The measures of
merit in a real-time system include:

• Predictably fast response: The system should respond quick-
ly and predictably to urgent events.

• High degree of schedulability: The timing requirements of the
system must be satisfied even at high degrees of resource usage.

• Stability under transient overload: When the system is over-
loaded by events, and it is impossible to meet all the deadlines,
the deadlines of selected critical tasks must still be guaranteed.

In their pursuit of all of these objectives, real-time systems make use
of a variety of scheduling algorithms. These methods of analysis allow
engineers to assign priorities +o different tasks, then spread the tasks
out to ensure that the ones at the highest priority levels always meet
their deadlines — no matter what else is going on within the system.
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Requirements for Embedded Real-Time
Systems

Real-time software is most commonly found in embedded systems.
Since the line between the operating system and the application in
these computers is often blurred, embedded systems that must func-
tion under time constraints generally require that the operating system
itself have real-time capabilities.

Other requirements for embedded systems may include:

• Small operating system footprint

• Diskless and/or headless operation

• Flash bootability

• Remote bootability

• Power monitoring and battery backup

• Integrated A/D, D/A, and DSP capabilities

• Power, reliability, safety, security, and maintainability constraints 

The wide range of physical differences among embedded systems
means that a successful system often will also incorporate one or
more of the following features:

• Board support packages (BSPs) for specific hardware

• Chassis mount

• A wide range of processor power, from 8-bit microcontrollers to
64-bit processors

• Low cost
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Common Problems with Using Linux for
Embedded Real-Time Systems

Linux has many strengths as an operating system. Yet those develop-
ing real-time systems with Linux must also overcome a number of
problems with the standard Linux components, including:

• Limited number of fixed priority levels

• No support for priority inheritance

• Limited QoS (Quality of Service) support

• Lack of support for high-resolution timers

• No support for periodic tasks

• Potentially non-preemptible kernel with possibly long system calls

• Limited support for non-desktop systems

Commonly, extensions and additions to Linux are developed to handle
the above problems.

Embedded Real-Time Systems and Linux •  9



Approaches to Designing a Linux-Based Real-
Time OS

Real-time approaches to Linux have generally fallen into four major
categories. These categories are:

1. Adding a new kernel below the Linux layer. RT-Linux from NMT and
Real-Time Applications Interface (RTAI) from Milan Polytechnic typify
this approach.

2. Extending the existing kernel to provide real-time capabilities.
TimeSys Linux exemplifies this approach.

3. Adding an OS server on top of a real-time microkernel. Running
MK-Linux on the Mach microkernel is an example of this approach.
For example, native Mach and Linux programs can both run simul-
taneously in such an environment.

4. Adding Linux binary compatibility to an existing RTOS.

Disadvantages

• Task failure leads to system
crash

• Requires custom device drivers

• Custom API for applications

Benefits

• Very high performance

• Smaller footprint

• Open source

Benefits

• Embedding support

• Real-Time POSIX extensions

• QoS guarantees

• Uses Linux drivers as is

• Uses all Linux applications, util-
ities, and compilers

• Support for Real-Time Java™

• Excellent timer resolution

• Open source

Disadvantages

• Performance not as high as
Category I
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TimeSys Linux™: an Embedded Real-Time OS
Based on Linux

TimeSys Linux™ is a Linux-based real-time operating system designed
primarily for embedded systems. Linux meets the OS needs of many
domains, including:

• Telecommunications systems

• Consumer electronics

• Automotive systems

• ISPs

• Multimedia and Web servers

• Medical electronics

• Process control

• Industrial automation

• Defense systems

• Avionics
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What Real-Time Functionality does TimeSys Linux Offer You?

TimeSys Linux is a complete real-time operating system with a full
range of capabilities. The TimeSys Linux programmer benefits from
such features as:

• Real real-time Linux applications: Any Linux process can
now become a real-time process. You are no longer constrained
to choose between a real-time OS and Linux. You do not have
to embed a thin real-time OS layer below the Linux kernel; you
just use Linux processes as is and grant them real-time capabili-
ties as you wish.

• POSIX (Portable Operating System Interface) support for
your real-time needs: TimeSys Linux provides complete sup-
port for the traditional real-time systems paradigm of using a
fixed-priority preemptive scheduling policy. In fact, it supports
2048 priority levels. It also supports priority inheritance on
mutexes to avoid the unbounded priority inversion problem. 

• QoS (Quality of Service) delivery: TimeSys Linux provides
direct and explicit support for QoS delivery to your real-time
applications using the notation of CPU and network reservations
(also called reserves).

• Real-time support for legacy applications: A convenient fea-
ture is that you can take existing legacy applications running on
Linux and endow them with QoS guarantees.
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TIMESYS LINUX VS. STANDARD LINUX

Footprint

Scheduler

Timer Resolution

POSIX Real-Time
Functionality

Yes No

Tools for
Embedded/RT
Support

Fine-grained
(2048 

priority levels)
Enforced CPU
Reservations

Standard UNIX
Scheduling

Comprehensive
TimeWiz

TimeTrace
TimeStorm

Limited

Geared To Clock
Resolution

(10 µs or less)

Very Low
(10 ms or more)

500KB - 1.2MB 1 - 2MB

Priority Inheritance Yes No

Periodic Tasks Yes No
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Why Use Linux for Real-Time?

The power and features of Linux make it a natural base for real-time
operating systems. The open source development model means that
any Linux code is freely available for anyone to use and contribute to,
and has led to an explosion of Linux development. Linux programmers
can take advantage of the knowledgeable user base and multitude of
software associated with Linux, as well as the years of fine-tuning that
mean Linux can be trusted to run smoothly.

The chart below lays out some of the benefits of choosing Linux for
your real-time operating system:
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Run-Time
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Standard RTOSTimeSys Linux

Applications 
and Utilities

Source Code
License

Developers
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100,000 + 5,000 to 50,000

Device Drivers

100,000 + Limited

50,000 + 5 to 5,000

Free
Expensive

(>$200,000 per seat)

Free
Expensive

(10¢ - $50.00 per
license)
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TimeSys Linux in Embedded Systems

TimeSys Linux was designed with the requirements of embedded 
systems in mind. The small footprint and reliability of TimeSys Linux
make it a good choice for embedding in a wide range of devices, from
small appliances to sophisticated transportation or defense systems. For
more information about customizing TimeSys Linux for your embedded
system, contact TimeSys or visit our website at www.timesys.com.

TimeSys prepares specialized Linux distributions that are customized
for the requirements and configuration of specific embedded develop-
ment boards. These customized Linux distributions are known as
Board Support Packages (BSPs).

A wide and continuously growing list of BSPs is available. Support for
Pentium, PowerPC, ARM, StrongARM, and XScale process boards
already exists. Other than the X86 desktop distribution, COMPACT
PCI, VME, VME64, and PC104 backplanes are supported. Ports to S-
H, MIPS, and NEC processors are under way.

TimeSys Linux can work with any standard Linux distribution, including
Red Hat, Debian, SuSE, Linux-Mandrake, and TurboLinux.
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Basic Components of TimeSys Linux

TimeSys has incorporated a critical set of components into its Linux
offering that, together, offer a highly innovative approach to meeting
time constraints. These components can be combined in some critical
ways to handle a wide variety of application requirements. The basic
components of TimeSys Linux are:

• Linux kernel (TimeSys Linux™)

• Real-time extensions (TimeSys Linux/Real-Time™)

• CPU reservation modules (TimeSys Linux/CPU™)

• Network reservation modules (TimeSys Linux/NET™) 

• TimeTrace™
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Key Features of TimeSys Linux

TimeSys Linux adds numerous features to the standard Linux base,
resulting in a system with impressive real-time capabilities. Below are
some of the most distinctive characteristics of TimeSys Linux.

• TimeSys Linux differs from other real-time Linux systems in that
the core kernel itself is modified to handle real-time applications.
This means, among other things, that if a single real-time
process crashes, the other processes and the kernel will contin-
ue safely along as if nothing happened. 

• The TimeSys Linux implementation offers extremely accurate
time management. The combination of a timestamp counter
with a high-resolution timer contributes to significant improve-
ment in the precision of resource management.

• QoS support is available in the form of CPU reservations.  

• Support for 2048 priority levels co-exists with QoS and reserva-
tion guarantees.

• Support for priority inheritance in mutexes helps avoid unbound-
ed priority inversion problems.

• Support for very-high-resolution timers and clocks.

• Support for periodic tasks is available.

• The Linux kernel supports the proc filesystem, which provides a
consistent view of the current status of Linux kernel and running
processes. TimeSys Linux uses the proc filesystem for providing
information on the hardware platform and the status of resource
sets and associated reservations.
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Architecture of TimeSys Linux

In the TimeSys Linux operating system, the code that provides sup-
port for real-time capabilities and for CPU and network reservations
resides in modules — binary code that can be inserted into the main
kernel for added functionality. This reliance on modules enables
TimeSys Linux to include all the features necessary for a complete
real-time operating system while keeping the size of the kernel as
small as possible. 

The loadable kernel modules (LKM) used in TimeSys Linux are object
modules that can be inserted into or removed from the kernel when
you boot your system or whenever they are required by an application.
From the application’s point of view, the system calls made available by
these modules are indistinguishable from the system calls in the kernel
itself, since the module is run in kernel (as opposed to user) mode.

The diagram shown above illustrates how the different components of
TimeSys Linux fit together.

Linux
Process

Linux
Process

User Mode

Kernel Mode Network
Reservations

Module

Linux Kernel

Linux
Process

CPU
Reservations

Module

Real-Time
Modules

Hardware

TimeTrace
Hooks

LKM
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Manually Loading and Unloading LKMs

To load a TimeSys Linux module, all you need to do is type:

insmod <module>

insmod comes with a number of flags and options:

-f Attempt to load the module, even if the version
of the kernel currently running and the version for
which the module was compiled do not match.

-k Auto-clean; remove modules that have not been
used in some period of time, usually one minute.

-m Output a load map, making it easier to debug
the module in the event of a kernel panic.

-o module_name Explicitly name the module, rather than deriving
the name from the base name of the source
object file.

-p Probe the module to see if it could be success-
fully loaded. This includes locating the object file
in the module path, checking version numbers,
and resolving symbols.

-s Output everything to syslog instead of the 
terminal.

-v Be verbose.

To unload a module, type:

rmmod module_name

rmmod also supports a few flags:

-a Remove all unused modules.

-s Output everything to syslog instead of the 
terminal.
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Reserves and Resource Sets

The primary abstractions behind the TimeSys Linux/Real-Time,
TimeSys Linux/CPU, and TimeSys Linux/NET modules are the
resource capacity reservations (reserves for short) and the resource
set. TimeSys Linux/Real-Time adds these features to the standard
Linux operating system to provide better controls over resource alloca-
tion, scheduling, and usage accounting. 

A reserve represents a share of a single computing resource. Such a
resource can be CPU time (as in TimeSys Linux/CPU), network pro-
cessing bandwidth (as in TimeSys Linux/NET), physical memory
pages, or a disk bandwidth. A certain amount of a resource is
reserved for use by the programs. A reserve is implemented as a ker-
nel entity; thus, it cannot be counterfeited. The kernel keeps track of
the use of a reserve and will enforce its utilization when necessary.
Appropriate scheduling and enforcement of a reserve by the resource
kernel guarantees that the reserved amount is always allocated for it.

A resource set represents a set of reserves. A resource set is bound
to one or more programs, and provides those programs with the
exclusive use of its reserved amount of resources. A resource set
groups together the resources that are necessary for an application to
do its job; thus, it is easy to examine and compare the utilization of
each resource in it. If the kernel or a QoS manager finds an imbalance
in resource utilization, an application will be notified and will be able to
change its QoS parameters in order to balance the utilization. 
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Behavior and Functioning of Reserves

When a reserve uses up its allocated time units within an interval, it is
said to be depleted. A reserve that is not depleted is said to be an
undepleted reserve. At the end of the current interval, the reserve
obtains a new quota and is said to be replenished. In our resource
management model, the behavior of a reserve between depletion and
replenishment can take one of two forms:

• Hard reserves - not scheduled for execution on depletion until
they are replenished.

• Soft reserves - can be scheduled for execution on depletion
without restriction

Reserves contain certain amounts of resources and control their uti-
lization. A reserve may represent one of many different types of
resources, such as CPU cycles, network bandwidth, or others.
Different types of resources have their own accounting information and
their own ways to deal with resource management. At the same time,
reserves need to provide a uniform interface; otherwise, modifications
are required each time a new resource type is added. 

Each reserve can be broken down into two parts, each geared
towards satisfying one of these two needs:

• An abstract reserve implements the functionality common
across all reserves and provides a uniform interface.  

• A real reserve implements resource-type-specific portions and
exports functions that adhere to the uniform resource manage-
ment interface.

Abstract and real reserves are always paired. When a reserve is creat-
ed, both components are formed and are coupled with each other.
The distinction is useful because only real reserves need to be imple-
mented in the creation of a new resource type.
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Real Reserves and Resource Guarantees

Real reserves implement the following mechanisms to guarantee
resource utilization based on reservation.

• Admission control: TimeSys Linux performs an admission 
control test on a new request to determine if it can be accepted
or not. If the request can be admitted,TimeSys Linux creates a
reserve based on the requested parameters.

• Scheduling policy: A scheduling policy controls dynamic
resource allocation so that an application can receive its
reserved amount of a resource.

• Enforcement: TimeSys Linux enforces the use of a resource by
an application based on its allocated reserves. An enforcement
mechanism prevents a resource from being used more than its
reserved amount.

• Accounting: TimeSys Linux tracks how much of a resource an
application has already used. This information is used by the
scheduling policy and the enforcement mechanism. An applica-
tion, such as a QoS manager or a real-time visualization tool,
can also query this information for observation and/or dynamic
resource allocation control purposes.
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Capabilities and Features of TimeSys Linux

TimeSys Linux provides the following capabilities:

• Fixed-priority scheduling with 2048 priority levels: You can
use the standard POSIX-compliant calls to assign a priority to
any Linux process.

• Priority inheritance to avoid unbounded priority inversion:
Timing problems from potentially unbounded priority inversion
can be eliminated by the use of priority inheritance protocols
using the Real-Time POSIX threads library and kernel support
provided by TimeSys Linux/Real-Time. The APIs used by
TimeSys are the same as POSIX in this regard.

• Quality of Service (QoS) support for resource reservation:
TimeSys Linux, through the CPU and NET modules, provides
direct support for delivering guaranteed Quality of Service (QoS)
to your real-time applications. An application can explicitly
request and obtain CPU and timing guarantees.

• High-resolution clocks and timers: TimeSys Linux/Real-Time
supports high-resolution clocks and timers. Resolutions of a few
microseconds or better are available.

• Periodic real-time tasks: Periodic execution of tasks is a com-
mon requirement in real-time systems. TimeSys Linux/Real-Time
allows Linux processes to be marked as periodic processes, in
which case they will be executed in periodic fashion.

• Memory wiring: TimeSys Linux/Real-Time can “lock” the physi-
cal memory pages of a real-time process so that they are not
swapped out by the paging system. The predictability of real-
time processes can suffer significantly without this feature.
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Development Tools for TimeSys Linux

TimeSys has developed a complete line of tools for real-time analysis.
TimeSys Linux supports the following TimeSys tools:

• TimeWiz®: a sophisticated system modeling, analysis, and sim-
ulation environment for real-time systems. A special version of
TimeWiz customized for Rational Rose is also offered. 

• TimeTrace®: provides the critical instrumentation needed to see
inside your real-time system, collecting all the necessary timing
data essential to the successful application of rate-monotonic
analysis and average-case simulation studies. 

• TimeStorm™: is a fully-featured IDE that lets you edit, compile,
download, and debug TimeSys Linux programs on a remote
Windows system.
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TimeWiz®: An Integrated Design and Simulation Environment
for Real-Time Systems

TimeWiz® is a TimeSys Corporation product specifically designed for
the construction of simple or complex real-time systems with pre-
dictable timing behavior.

TimeWiz lets you:

• Represent your hardware and software configurations visually.

• Analyze the worst-case timing behavior of your system.

• Simulate its average-case timing behavior.

• Model processors and networks for end-to-end performance.

• Chart your system parameters and generate integrated system
reports.
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TimeTrace®: A Real-Time Profiling Environment

TimeTrace® is a productivity enhancement tool from TimeSys
Corporation that lets you profile your real-time OS target in real-time. 

With TimeTrace, you can:

• Capture execution sequence on targets efficiently.

• Display target execution sequences visually to create a “software
oscilloscope.”

• Monitor multiple targets simultaneously from a single workstation.

• Feed TimeTrace data into TimeWiz as execution time and period
parameters for worst-case analysis and/or average-case simulation.
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TimeStorm™: An Integrated Development Environment for
TimeSys Linux

TimeStorm™ is a gcc-based integrated development environment (IDE)
that allows you to create, compile, and debug TimeSys Linux applica-
tions on a remote system. 

With TimeStorm, you can:

• Write and edit code with a powerful editor that features search-
and-replace functionality as well as language-specific syntax
highlighting.

• Debug your applications with gdb. 

• Navigate your project easily with control trees that let you view
every file or every class, method, and variable in your project.

• Export applications to a variety of embedded systems running
TimeSys Linux.

• Develop TimeSys Linux applications in a familiar, Windows-
based environment.
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TimeSys Linux Utilities

Besides such standard day-to-day Linux utilities as make and gcc,
TimeSys Linux comes with an assortment of utilities that allow you to
manipulate resource sets and other basic real-time concepts. 

These utilities include:

• clockfreq: Allows you to retrieve the processor clock frequency
at which the CPU is running.

• rkattach: Allows you to attach a process (specifying its pid) to
an existing resource set. Remember to specify the resource set
id using the hexademical format. You can attach any Linux
process using this utility, even if the process was written without
any knowledge of RK.

• RKcleanRS: A shell script that destroys all resource sets and
their reserves in the processor.

• rkdestroy: Allows you to destroy a resource set (whose id is
specified using the hexademical format).

• rkdetach: Allows you to detach a process (specified by its pid)
from an existing resource set.

• rkexec: Allows you to create a new resource set with CPU
reservation parameters and attach a new process to the
resource set. Again, this allows any legacy process (written 
without any knowledge of TimeSys Linux) to be able to use 
and benefit from the Quality of Service guarantees provided 
by TimeSys Linux.

• rklist: Lists the current resource sets in the system and their
parameters.
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Real-Time Java

The Real-Time Specification for Java (RTSJ), completed in 2001 under
Sun Microsystems’ Java Community Process, meets the need for a
truly platform-independent real-time programming language. The RTSJ
allows TimeSys Linux users to take advantage of real-time extensions
to Java that include the following:

• Real-time threads. These threads offer more carefully defined
scheduling attributes than standard Java threads.

• Tools and mechanisms that let developers write code that does
not need garbage collection.

• Asynchronous event handlers, and a mechanism that associates
asynchronous events with happenings outside the JVM.

• Asynchronous transfer of control, which provides a carefully
controlled way for one thread to throw an exception into another
thread.

• Mechanisms that let the programmer control where objects will be
allocated in memory and access memory at particular addresses.

TimeSys developed the reference implementation for the RTSJ, which
is available at www.timesys.com. Further RTSJ information is avail-
able at www.rtj.org.
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System Calls on CPU Reservations 

int rk_cpu_reserve_create (rk_resource_set_t rs, rk_reserve_t
*rs, cpu_reserve_attr_t attr);
Creates a CPU reservation and attaches to resource set rs. The
amount of CPU reservation is specified with struct cpu reserve attr
(defined in <rk/rk.h>). It permits the definition of computation time (C),
period (T), deadline (D), blocking time (B, typically 0), and enforcement
mode (hard or soft). Currently, TimeSys Linux supports RSV HARD and
RSV SOFT. 

• RSV HARD: guaranteed to receive the specified amount on success

• RSV SOFT: guaranteed to receive the specified amount on 
success. If resource is still available after using up guaranteed
amount, it will compete against unreserved tasks for more.

int rk_cpu_reserve_ctl (rk_resource_set_t rs,
cpu_reserve_attr_t attr);
Changes the properties of existing CPU reservations (computation
time, period, deadline, blocking time and enforcement mode).
Typically, a failure return indicates that admission control has failed. 
In that case, the original values of the CPU reserve are restored and
the reserve continues to be valid.

int rk_cpu_reserve_delete(rk_resource_set_t rs);
Deletes the CPU reserve associated with a resource set.

int rk_cpu_reserves_get_num(void);
Returns the number of CPU reserves currently in the system. This
function is normally followed by a rk_cpu_reserves_get_list system
call.

int rk_cpu_reserves_get_list(rk_reserve_t *buff, int size);
Returns the list of CPU reserves in the system; count is the size in bytes
of the buffer; buff must point to a buffer of sufficient size to hold all cur-
rent CPU reserves. The number of resource sets stored into the *buff
buffer is returned. This system call is typically preceded by the rk cpu
reserves get num( ) system call. The number of CPU reserves actually
stored in the *buff buffer is returned by the call.
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int rk_cpu_reserve_get_attr(rk_reserve_t rsv, cpu_reserve
_attr_t attr);
Returns the attributes of the specified CPU reserve rsv, which include
the reserve’s computation time (C), period (T), deadline (D), blocking
time (B, typically 0), and enforcement mode (hard or soft). 

void rk_inherit_mode (int mode);
Determines whether children created by this process inherit the
resource set of the parent process. A mode value of 0 clears the flag,
and a non-zero value sets the flag. This functionality enables programs
like make to bind themselves and all their children like gcc, ld, etc. to
the same fixed resource reservation.
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System Calls on Network Reservations

int rk_net_reserve_create (rk_resource_set_t rs, rk_reserve_t
*rsv, net_reserve_attr_t  attr);
Creates a network reservation with the specified parameters and
attaches it to the specified resource set.

int rk_net_reserve_ctl( rk_resource_set_t  rs, net_reserve_attr_t
attr);
Changes the behavior of the network reserves in the specified resource
set to the behavior in the specified net_reserve_attr_t.

int rk_net_reserve_delete (rk_resource_set_t rs);
Delete the network reserve associated with the specified resource set.

int rk_net_reserve_get_attr (rk_reserve_t rsv,
net_reserve_attr_t attr);
Fills in a net_reserve_attr_t struct with the values applicable to the
specified network reserve.

int rk_net_reserves_get_list (rk_reserve_t *buff, int size);
Puts a list of the system’s current network reserves into the buff buffer.

int rk_net_reserves_get_num ();
Returns the number of network reserves currently in the system.

int rk_netr_reserve_create (rk_resource_set_t  rs,
rk_reserve_t *rsv netr_reserve_attr_t attr);
Creates a network reservation with attributes. 

int rk_netr_reserve_ctl  (rk_resource_set_t  rs,
net_reserve_attr_t  attr);
Changes the behavior of the network reserves attached to rs to the
behavior defined in attr.

int rk_netr_reserve_delete (rk_resource_set_t  rs);
Deletes the network reserve associated with the resource set rs.
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int rk_netr_reserve_get_attr (rk_reserve_t rsv,
net_reserve_attr_t  attr);
Reads the attributes of rsv and returns them in attr.

int rk_netr_reserves_get_list (rk_reserve_t *buff, int  size);
Puts a list of the system's current network reserves into the buffer
buff. A maximum of size bytes will be returned. 

int rk_netr_reserves_get_num ();
Returns the number of network reserves currently in the system.
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System Calls on Resource Sets

rk_resource_set_t rk_proc_get_rset (pid_t  pid);
Returns the resource set associated with the process pid.

int rk_resource_set_attach_process(rk_resource_set_t rs,
pid_t pid);
int rk_resource_set_detach_process(rk_resource_set_t rs,
pid_t pid);
Attaches the process identified by pid to and detaches it from the
resource set.

int rk_resource_set_attach_socket (rk_resource_set_t  rs, int
socket_fd, rk_reserve_type_t reserve_type);

int rk_resource_set_detach_socket (rk_resource_set_t  rs, int
socket_fd, rk_reserve_type_t reserve_type);
The rk_resource_set_attach_socket system call attaches the sock-
et socket_fd to the resource set rs. The socket will be used by the
network reserve of type reserve_type, which must have been previ-
ously attached to the resource set.

The rk_resource_set_detach_socket call detaches the socket
socket_fd from the network reserve of type reserve_type.

rk_resource_set_t rk_resource_set_create (char *name);
Creates a resource set and associates the label name with it.

int rk_resource_set_destroy (rk_resource_set_t rs);
Destroys the resource set rs. All reserves in the resource set are delet-
ed and any attached processes are detached.

rk_reserve_t rk_resource_set_get_cpu_rsv (rk_resource_set_t rs);
Returns the cpu reserve associated with the resource set rs.

int rk_resource_set_get_name (rk_resource_set_t rs, char *name);

int rk_resource_set_set_name (rk_resource_set_t rs, char *name);
The rk_resource_set_get_name system call gets the name of the
resource set rs and copies it to name.
The rk_resource_set_set_name system call assigns the string
NAME as the new name of the resource set rs.
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rk_reserve_t rk_resource_set_get_net_rsv (rk_resource_set_t rs);
Returns the net reserve associated with the resource set rs.

rk_reserve_t rk_resource_set_get_netr_rsv (rk_resource_set_t rs);
Returns the netr reserve associated with the resource set rs.

int rk_resource_set_get_num_procs (rk_resource_set_t rs);
Returns the number of processes attached to the resource set rs.

int rk_resource_set_get_proclist (rk_resource_set_t rs, pid_t
*procs, int count);
Examines the resource set rs and creates a list of process IDs in
procs corresponding to the processes currently attached to the
resource set. The procs buffer must have space for count pids.
Typically the size required for the procs buffer is determined by calling
rk_resource_set_get_num_procs first to determine the number of
processes attached to rs.

int rk_resource_sets_get_list (rk_resource_set_t *rs, int count);
Scans the system for resource sets and creates a list in the buffer
pointed to by rs. There must be room for count bytes in this buffer. 

int rk_resource_sets_get_num ();
Returns the number of resource sets currently defined in the system.

int rk_signal_reserve_enforce (pid_t pid, rk_reserve_t rsv,
sigevent_t *evp);
Allows a process to be registered to receive a signal when a reserve is
enforced. If the signal pointer evp is NULL, the process will be unregis-
tered and will no longer receive the signal.
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System Calls on Clocks and Timers

unsigned long rt_get_clock_frequency ();
Returns the system clock frequency in Hz. On some architectures (x86),
this is the same as the processor clock frequency. On other architec-
tures, the system clock runs at a different frequency than the clock.

int clock_getres (clockid_t clock_id, const struct timespec *res);
Gets the resolution of the clock clock_id and places it in res.

int clock_gettime (clockid_t clock_id, struct timespec *tp);

int clock_settime (clockid_t clock_id, const struct timespec *tp);
The clock_gettime call will get the current time of the clock clock_id
and place it in tp.

The clock_settime call will set the current time of the clock clock_id
with the value in tp.

int timer_create (clockid_t clock_id, struct sigevent *evp
timer_t *timerid);
create a timer on clock clock_id that will raise event evp every expiry,
and place the timer's id in timerid.

int timer_delete (timer_t timerid);
Deletes the timer specified by timerid.

int timer_getoverrun (timer_t timerid);
Returns the number of times the timer timerid has expired since the
most recently generated signal was delivered. If no signal has been
delivered, then the results are undefined.

int timer_gettime (timer_t timerid, struct itimerspec *value);
Returns the amount of time remaining until the timer timerid will
expire and the reload value in the location specified by value.

int timer_settime (timer_t timerid, int flags, const struct 
itimerspec *value, struct itimerspec *ovalue);
Sets the start and interval values for the timer timerid to the values
contained in value and copy the old values into ovalue if ovalue is
not NULL. 
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System Calls on Periodic Real-Time Processes

int rt_make_periodic(struct timespec *period, struct timespec
*start);
The calling thread is made periodic with the specified period 
parameter and its period will begin at time start, which represents 
an absolute point in time. The calling task will typically call the func-
tion rt_wait_for_start_time, described next, after calling 
this function.

This is not persistent across exec and fork system calls.

int rt_wait_for_start_time(void);
This function is called by a periodic task and allows the task to be
delayed until the point in time when its periodicity starts. If the start
time has already elapsed, the function will return immediately. This
function is typically preceded by a call (but only once) to the
rt_make_periodic function described above.

int rt_wait_for_next_period(void);
This function is called by a periodic task to wait for its next (possible)
period boundary. The task is blocked until the next boundary.

int rt_process_get_period(pid_t pid, struct timespec *period);
Obtains the period in the structure period of the real-time periodic
process specified by pid.

int rt_process_set_period(pid_t pid, struct timespec *period);
Sets the period of the real-time periodic process specified by pid to
the period value in the structure period.

int rk_cpu_reserves_get_scheduling_policy(void);
(Deadline monotonic scheduling is generally preferable in this context
because of the higher schedulability it offers).
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System Calls on Mutexes

int rt_mutex_create (int proto, int gid);

int rt_mutex_destroy (int mutex_id);
The rt_mutex_create call will create a mutex where proto specifies
which priority inheritance model to use, and gid specifies which
threads may lock this mutex.

The rt_mutex_destroy call will destroy the mutex referenced by
mutex_id.

int rt_mutex_lock (int mutex_id);

int rt_mutex_trylock (int mutex_id);

int rt_mutex_unlock (int mutex_id);
The rt_mutex_lock call will attempt to lock the mutex mutex_id. If
the mutex is already locked the calling thread will block and, depend-
ing on what protocol for priority inheritance was specified at mutex
creation, the process that holds the lock on the mutex may have its
priority adjusted to run at a higher priority than normal while the mutex
is held.

The rt_mutex_trylock call will attempt to lock the mutex mutex_id.
If the mutex is already locked, this call returns immediately. If success-
ful, the same effects on priority occur as if it were rt_mutex_lock.

The rt_mutex_unlock call will unlock the mutex mutex_id. The
mutex may only be unlocked by the process that locked it, and any
effects on priority caused by locking this mutex are reversed.

int rt_signal_deadline (pid_t pid, struct timespec *deadline,
sigevent_t *evp);
Allows a periodic process to specify a deadline time and register itself
or another process to receive a signal when it misses that deadline. A
process is considered to have missed its deadline if it doesn't call
rt_wait_for_next_period before its deadline time. The process
must be periodic, i.e., it must have called rt_make_periodic prior to
calling rt_signal_deadline.
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int pthread_mutexattr_init (pthread_mutexattr_t *attr);

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

int pthread_mutexattr_setprotocol (pthread_mutexattr_t *attr,
int protocol);

int pthread_mutexattr_getprotocol (pthread_mutexattr_t
*attr, int *protocol);

int pthread_mutexattr_setgid (pthread_mutexattr_t *attr, int gid);

int pthread_mutexattr_getgid (pthread_mutexattr_t *attr, int *gid);
The pthread_mutexattr_init call initializes an attribute structure for a
mutex. This must be done before that attribute structure is used in a
pthread_mutex_init (3) call at which point the actual attributes of a
mutex are fixed. attr is a pointer to a previously declared mutex attrib-
ute structure.

pthread_mutexattr_init disables all dynamic priority protocols such
as priority inheritance and priority ceiling, and allows access only to
threads who are members of the same process group as the thread
that initialized the mutex.

pthread_mutexattr_destroy is included for completeness. It cur-
rently performs no useful function and simply returns 0.
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Real-Time Extensions 
to POSIX (IEEE 1003.1d)



Error Values

The variable errno can be used to determine the cause of a function
failure. A function can set the variable to one of a number of values if it
returns an indicator of failure.

E2BIG Number of bytes used by argument and envi-
ronment list exceeds the system imposed limit

EACCES Permission denied

EAGAIN Resource unavailable

EBADF Bad file descriptor

EBADMSG Bad message

EBUSY Resource busy

ECHILD No child process

EDEADLK Resource deadlock avoided

EDOM Domain error

EEXIST File exists

EFAULT Bad address

EFBIG File too large

EINPROGRESS Operation in progress

EINTR Interrupted function call

EINVAL Invalid argument

EIO I/O error

EISDIR Is a directory

EMFILE Too many open files

EMLINK Too many links
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EMSGSIZE Inappropriate message buffer length

ENAMETOOLONG Filename too long

ENFILE Too many open files in the system

ENODEV No such device

ENOENT No such file nor directory

ENOEXEC Exec format error

ENOLCK No locks available

ENOMEM Not enough memory

ENOSPC Not enough space on device

ENOSYS Function not available on current implementation

ENOTDIR Not a directory

ENOTEMPTY Directory not empty

ENXIO No such device or address

EPERM Operation not permitted

EPIPE Broken pipe

ERANGE Result too large

EROFS Read-only file system

ESPIPE Invalid seek

ESRCH No such process

ETIMEDOUT Operation timed out

EXDEV Improper link
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Primitive Functions

Unless otherwise indicated, all functions return 0 on success and an
error number on failure.

Process creation, execution, and termination:

#include <sys/types.h>
pid_t fork ( void );

returns:
0 to child process upon success
process ID to parent process upon success
error no. on failure  

errno:
EAGAIN
ENOMEM

int execl (const char *path, const char *arg, ...);
int execv (const char *path, char *const argv[]);
int execle (const char *path, const char *arg, ...);
int execve (const char *path, char *const argv[], char *const envp[]);
int execlp (const char *file, const char *arg, ...);
int execvp (const char *file, char *const argv[]);

errno:
E2BIG
EACCES
ENAMETOOLONG
ENOENT
ENOTDIR
ENOEXEC
ENOMEM

int pthread_atfork(void (*prepare)(void), void (*parent) (void),
void (*child)(void));

errno:
ENOMEM

#include <sys/types.h>
#include <sys/wait.h>
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pid_t  wait( int *stat_loc);
pid_t waitpid( pid_t pid, int *stat_loc, int options);

returns:
ID of found process on success
error no. on failure

errno:
EINTR 
ECHILD 
EINVAL

void _exit( int status);
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Signals and Timers

Unless otherwise indicated, all functions return 0 on success and an
error number on failure.

Default actions:
1) Abnormal termination  
2) Ignore 
3) Stop process 
4) Continue process

<signal.h> defines these signal actions:

SIGABRT (1) Abnormal termination

SIGALRM (1) Timeout signal

SIGFPE (1) Erroneous arithmetic operation

SIGHUP (1) Hangup detected or death of controlling process

SIGILL (1) Invalid hardware instruction

SIGINT (1) Interactive attention 

SIGKILL (1) Termination signal

SIGPIPE (1) Write on a pipe with no readers

SIGQUIT (1) Interactive termination signal

SIGSEGV (1) Detection of an invalid memory reference

SIGTERM (1) Termination signal

SIGUSR1 (1) Application-defined signal

SIGUSR2 (1) Application-defined signal

SIGCHLD (2) Child process terminated or stopped

SIGCONT (4) Continue if stopped

SIGSTOP (3) Stop signal
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SIGTSTP (3) Interactive stop signal

SIGTTIN (3) Read from control terminal by member of
background process group

SIGTTOU (3) Write from control terminal by member of
background process group

#include <signal.h>
int kill (pid_t pid, int sig);

errno:
EINVAL 
EPERM 
ESRCH

int sigemptyset (sigset_t *set);
int sigfillset (sigset_t *set);
int sigaddset (sigset_t *set);
int sigdelset (sigset_t *set, int signo);
int sigismember (const sigset_t *set, int signo);

returns:
0 on success
error no. on failure
1 returned by sigismember if signal is in set

errno:
EINVAL

int signalaction (int sig, const struct sigaction *act, struct
sigaction *oact);

errno:
EINVAL 
ENOTSUP

int pthread_sigmask (int how, const sigset_t *set, sigset_t *oset);
int sigprocmask (int how, const sigset_t * set, sigset_t *oset);
int sigpending (sigset_t *set);

errno:
EINVAL

int sig0suspend (const sigset_t *sigmask);
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errno:
EINTR

int sigwait (const sigset_t *set, int *sig);
int sigwaitinfo (const sigset_t *set, siginfo_t *info);
int sigtimedwait (const sigset_t *set, siginfo_t *info, 

const struct timespec *timeout);
int sigqueue (pid_t pid, int signo, const union sigval value);

returns:
sigwait:
0

sigwaitinfo, sigtimedwait:
signal number

sigqueue:
0 on success
error no. on failure 

errno:
EINVAL 
ENOSYS 
EINTR 
EAGAIN 
EPERM 
ESRCH

int pthread_kill (pthread_t *thread, int sig);

errno: 
ESRCH 
EINVAL

unsigned int alarm (unsigned int seconds);
unsigned int sleep (unsigned int seconds);

returns:
Always successful.
0 if time has expired 
amount of time left if interrupted.

int pause (void);

errno:
EINTR
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Process Identification

#include <sys/types.h>

pid_t getpid (void);
pid_t getppid (void);
uid_t getuid (void);
uid_t geteuid (void);
gid_t getgid (void);
gid_t getegid (void);
pid_t getgrp (void);

returns:
Always successful: returns respective ID of calling process.

int setuid (uid_t uid);
int setgid (gid_t gid);
int setsid (void);

errno:
EINVAL
EPERM 

int getgroups(int gidsetsize, gid_t grouplist[]);

returns:
No. of group ids on success
error no. on failure 

errno:
EINVAL

char *getlogin (void);
int getlogin_r (char *name, size_t namesize);

returns:
getlogin:
pointer to the string containing user's login name
NULL if not found. 

getlogin_r:
0 on success
error no. on failure
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errno:
ERANGE

int uname (struct utsname *name);

#include <stdlib.h>
char *getenv (const char *name);

returns:
Pointer to the string list of the environment if successful, an error num-
ber if not.   

char *ctermid (char *s);

returns:
Pointer to string that represents the pathname if successful, empty
string if not.

char *ttyname (int fildes);

int ttyname_r (int fildes, char *name, size_t namesize);
int isatty (int fildes);

returns:
ttyname:
Returns a pointer to a string containing the pathname of the terminal if
successful and NULL if not.

ttyname_r:
Stores pathname in *name if successful and returns an error number
if not.

isatty:
Returns 1 if successful and 0 if not.

errno:
EBADF 
ENOTTY 
ERANGE
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Files and Directories

Unless otherwise indicated, all functions return 0 on success and an
error number on failure.

Directories:

DIR *opendir (const char *dirname);
struct dirent *readdir (DIR *dirp);
int readdir_r (DIR *dirp,  struct dirent *entry,  

struct dirent **result);
void rewinddir (DIR *dirp);
int closedir (DIR *dirp);

returns:
opendir and readdir return a pointer if successful, or NULL if not.
readdir_r and closedir return 0 if successful, or an error number if
not.

errno: 
EACCESS 
ENAMETOOLONG 
ENOENT 
ENOTDIR 
EMFILE 
ENFILE 
EBADF 

int chdir (const char *path);

errno:
EACCES 
ENAMETOOLONG 
ENOTDIR 
ENOENT

char *getcwd (char *buf, size_t size);

returns:
buf on success
NULL pointer on failure  

errno:
EINVAL
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ERANGE 
EACCES

File, Directory Creation, Deletion and Manipulation:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *path, int oflag, …);

returns:
Lowest nonnegative integer representing an unused file descriptor is
successful, an error number if not. 

errno:
EACCES 
EEXIST 
EINTR 
EINVAL 
EISDIR 
EMFILE 
ENAMETOOLONG 
ENFILE 
ENOENT 
ENOSPC 
ENOTDIR 
ENXIO 
EROFS

mode_t unmask (mode_t cmask);

returns:
Always successful

int link (const char *existing, const char *new);
int mkdir (const char * path, mode_t mode);
int mkfifo (const char *path, mode_t mode);
int unlink (const char *path);
int rmdir (const char *path);
int rename (const char *old, const char *new);
int stat (const char *path, struct *buf);
int fstat (int fildes, struct stat *buf);
int access (const char *path, int amode);
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int chmod (const char *path, mode_t  mode);
int fchmod (int fildes,  mode_t mode);
int chown (const char *path, uid_t  owner, gid_t group);

errno:
EACCES 
EBUSY 
EEXIST 
EINVAL 
EMLINK 
ENAMETOOLONG 
ENOENT 
ENOSPC 
ENOTDIR 
EPERM 
EROFS 
EXDEV

#include <sys/types.h>
#include <utime.h>

int utime(const char *path, const struct utimbuf *times);

errno:
EACCES 
ENAMETOOLONG 
ENOENT 
ENOTDIR 
EPERM 
EROFS

#include <unistd.h>

int ftruncate (int fildes, off_t length);

errno:
EBADF 
EINVAL 
EROFS

#include <unistd.h>

long pathconf (const char *path, int name);
long fpathconf (int fildes, int name);
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returns:
Current variable value for the file or directory if succesful, an error
number if not.  

errno:
EACCES 
EBADF 
EINVAL 
ENAMETOOLONG 
ENOENT 
ENOTDIR 
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Input and Output Primitives

Unless otherwise indicated, all functions return 0 on success and an
error number on failure.

int pipe (int fildes[2]);
int dup (int fildes);
int dup2 (int fildes, int fildes[2]);
int close (int fildes);

errno:
EBADF 
EMFILE 
ENFILE 
EINTR

Reading to, writing from, and controlling the state of a file:

ssize_t read (int fildes, void *buf, size_t  nbyte);
ssize_t write (int fildes, const void *buf, size_t nbyte);

returns:
Number of bytes written or read if successful, an error number if not.  

errno:
EAGAIN 
EBADF 
EFBIG 
EINTR 
EIO 
ENOSPC 
EPIPE

int fcntl (int fildes, int cmd, …);

returns:
A value determined by the cmd parameter if successful, an error num-
ber if not.  

errno:
EACCES 
EAGAIN 
EBADF 
EINTR 
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EINVAL 
EMFILE 
ENOLCK 
EDEADLK

off_t lseek (int fildes, off_t offset, int whence);

returns:
offset location on success
off_t -1 on failure

errno:
EBADF 
EINVAL 
ESPIPE

#include <unistd.h> 

int fsync (int fildes);
int fdatasync (int fildes);

errno:
EAGAIN 
EBADF 
EINVAL 
ENOSYS

Asynchronous I/O:

#include <aio.h>

int aio_read (struct aiocb *aiocbp);
int aio_write (struct aiocb *aiocbp);
int lio_listio (int mode, struct aiocb *const list[], 

int nent, struct sigevent *sig);
int aio_error (const struct *aiocbp);
int aio_return (struct aiocb *aiocbp);
int aio_suspend (const struct aiocb *const list[], 

int nent, const struct timespec *timeout);
int aio_fsync (int op, struct aiocb *aiocbp);

returns:
0 if successful, status value or undefined if not complete, an error
number if error occurs.  
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errno: 
EAGAIN 
EINVAL 
EINTR 
EIO 
EBADF 
EINVAL 
ENOSYS

58 •  TimeSys Corporation



Terminal Control

Unless otherwise indicated, all functions return 0 on success and an
error number on failure.

#include <termios.h>

Baud rate functions:

speed_t cfgetospeed (const struct termios *termios_p);
int cfsetospeed (struct termios *termios_p, speed_t speed);
speed_t cfgetispeed (const struct termios *termios_p);
int cfsetispeed (struct termios *termios_p, speed_t  speed);

returns:
If a set function, the speed value is returned; if a get function, 0; an
error number if not successful.  

Terminal interface functions:

int tcgetattr (int fildes, struct termios *termios_p);
int tcsetattr (int fildes, int optional_actions, 

const struct termios *termios_p);
int tcsendbreak (int fildes, int duration);
int tcdrain (int fildes);
int tcflush (int fildes);
int tcflow (int fildes, int action); 

errno: 
EBADF 
EINTR 
EINVAL 
ENOTTY 

pid_t tcgetpgrp (int fildes);

returns:
A value greater than 1 that does not match existing process group ID
if successful, an error number if not.  

errno:
EBADF 
ENOSYS 
ENOTTY
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int tcsetpgrp (int fildes, pid_t pgrp_id);

errno:
EBADF 
EINVAL 
ENOSYS 
ENOTTY 
EPERM
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Language-Specific Services

Unless otherwise indicated, all functions return 0 on success and an
error number on failure.

#include <stdio.h>

int fileno (FILE *stream);
FILE *fdopen (int fildes, const char *type);
void flockfile (FILE *file);
int ftrylockfile (FILE *file);
void funlockfile (FILE *file);
int getc_unlocked (FILE *stream);
int getchar unlocked (void);
int putc_unlocked (int c, FILE *stream);
int putchar_unlocked (int c);

#include <setjmp.h>

int sigsetjmp (sigjmp_buf env, int savemask);
void siglongjmp (sigjmp_buf env, int val);

#include <time.h>

char *strtok_r (char *s, const char *sep, char **lasts);
char *asctime_r (const struct tm *tm, char *buf);
char *ctime_r (const time_t *clock, char *buf);
struct tm *gmtime_r (const time_t *clock, struct tm *result);
struct tm *localtime_r(const time_t *clock, struct tm *result);

#include <stdlib.h>

int rand_r (unsigned int *seed);

returns:
0 for int returns on success
pointer to return type for other returns on success 
error no. or NULL on failure

There are no errno values specified for these functions.
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Synchronization

Unless otherwise indicated, all functions return 0 on success and an
error number on failure.

Semaphores:

#include <semaphore.h>

int sem_init (sem_t *sem, int pshared, unsigned int value);
int sem_destroy (sem_t *sem);
int sem_close (sem_t *sem);
int sem_unlink (const char *name);
int sem_wait (sem_t *sem);
int sem_trywait (sem_t *sem);
int sem_post (sem_t *sem); 

errno:
EAGAIN 
EDEADLK 
EINTR  
EINVAL 
ENAMETOOLONG 
ENOENT  
ENOSPC 
ENOSYS 
EPERM

sem_t *sem_open (const char *name, int oflag, …);

returns:
The address of the semaphore if successful, an error number if not.  

errno:
EACCES 
EEXIST 
EINTR 
EINVAL 
EMFILE 
ENAMETOOLONG 
ENFILE 
ENOENT 
ENOSPC 
ENOSYS
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int sem_getvalue (sem_t *sem, int *sval);

returns:
0 and sets sval to value of the semaphore referenced if successful, an
error number if not. 

Mutexes:

#include <pthread.h>

int pthread_mutexattr_init (pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy (pthread_mutexattr_t *attr);
int pthread_mutexattr_getpshared 

(const pthread_mutexattr_t *attr, int *pshared);
int pthread_mutexattr_setpshared 

(pthread_mutexattr_t *attr, int pshared);
int pthread_mutex_init (pthread_mutex_t *mutex, 

const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);
int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

returns:
0 if successful (pthread_mutexattr_getpshared stores the shared
attribute in pshared), an error number if not.  

errno:
EAGAIN 
EBUSY 
EDEADLK 
EINVAL 
ENOMEM 
ENOSYS 
EPERM

Condition variables:

#include <pthread.h>

int pthread_condattr_init (pthread_condattr_t *attr);
int pthread_condattr_destroy (pthread_condattr_t *attr);
int pthread_condattr_getpshared 

(const pthread_condattr_t *attr, int *phared);
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int pthread_condattr_setpshared 
(const pthread_condattr_t *attr, int pshared);

int pthread_cond_init (pthread_cond_t *cond, 
const pthread_condattr_t *attr);

int pthread_cond_destroy (pthread_cond_t *cond);
int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

returns:
0 if successful (pthread_condattr_getpshared stores the shared
attribute in pshared), an error number if not.  

errno:
EAGAIN 
EBUSY 
EDEADLK 
EINVAL 
ENOMEM 
ENOSYS 
EPERM

int pthread_cond_wait (pthread_cond_t *cond, 
pthread_ mutex_t *mutex);

int pthread_cond_timedwait (pthread_cond_t *cond, 
pthread_ mutex_t *mutex, 
const struct timespec *abstime);

errno: 
EINVAL 
ETIMEDOUT
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Memory Management

Unless otherwise indicated, all functions return 0 on success and an
error number on failure.

Memory locking:

#include <sys/mman.h>

int mlockall (int flags);
int munlockall (void);
int mlock (const void *addr, size_t len);
int munlock (const void *addr, size_t len);

errno: 
EAGAIN 
EINVAL 
ENOMEM 
ENOSYS 
EPERM

Memory mapping and protection:

#include <sys/mman.h>

void *mmap (void *addr, size_t len, int prot, int flags, 
int fildes, off_t off);

int munmap (void *addr, size_t len);
int mprotect (const void *addr, size_t len, int prot);

returns:
munmap and mprotect return 0, mmap returns the address if suc-
cessful, an error number if not.  

errno: 
EACCES 
EAGAIN 
EBADF 
EINVAL 
ENODEV 
ENOMEM 
ENOSYS 
ENOTSUP 
ENXIO
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#include <sys/mman.h>

int msync (void *addr, size_t len, int flags);

errno:
EINVAL 
EFAULT 
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Process Scheduling

Unless otherwise indicated, all functions return 0 on success and an
error number on failure.

Policy and scheduling parameters:

#include <sched.h>

int sched_setparam (pid_t pid, 
const struct sched_param *param);

int sched_setscheduler (pid_t pid, int policy, 
const struct sched_param *param);

int sched_yield (void);

errno:
EINVAL 
ENOSYS 
EPERM 
ESRCH

int sched_getparam (pid_t pid, struct sched_param *param);
int sched_getscheduler (pid_t pid);
int sched_get_priority_max (int policy);
int sched_get_priority_min (int policy);
int sched_rr_get_interval (pid_t pid, struct timespec *interval);

returns:
requested value on success
error no. on failure 

errno:
ENOSYS 
EPERM 
ESRCH 

Thread scheduling:

#include <pthread.h>

int pthread_attr_setscope (pthread_attr_t *attr, 
int contentionscope);

int pthread_attr_getscope (const pthread_attr_t *attr, 
int contentionscope);

int pthread_attr_setinheritsched (pthread_attr_t *attr, 
int inheritsched);
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int pthread_attr_getinheritsched 
(const pthread_attr_t *attr, int inheritsched);

int pthread_attr_setschedpolicy (pthread_attr_t *attr, 
int policy);

int pthread_attr_getschedpolicy 
(const pthread_attr_t *attr, int policy);

int pthread_attr_setschedparam (pthread_attr_t *attr, 
const struct sched_param *param);

int pthread_attr_getschedparam 
(const pthread_attr_t *attr, 
struct sched_param *param);

int pthread_setschedparam (pthread_t thread, int policy, 
const struct sched_param *param);

int pthread_getschedparam (pthread_t thread, int *policy, 
struct sched_param *param);

errno:
ENOSYS 
EINVAL 
ENOTSUP 
EPERM 
ESRCH

Scheduling mutex initialization:

#include <pthread.h>

int pthread_mutexattr_setprotocol 
(pthread_mutexattr_t *attr, int protocol);
int pthread_mutexattr_getprotocol 

(const pthread_mutexattr_t *attr, int *protocol);
int pthread_mutexattr_setprioceiling 

(pthread_mutexattr_t *attr, int prioceiling);
int pthread_mutexattr_getprioceiling 

(const  pthread_mutexattr_t *attr, int *prioceiling);
int pthread_mutex_setprioceiling (pthread_mutex-_t *mutex, 

int prioceiling, int *old_ceiling);
int pthread_mutex_getprioceiling 

(const pthread_mutex_t *mutex, int *prioceiling);

errno:
ENOSYS 
ENOTSUP 
EINVAL 
EPERM 
ESRCH
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Timers

Unless otherwise indicated, all functions return 0 on success and an
error number on failure.

Structures:

struct timespec {
time_t (tv_sec) //seconds
long (tv_nsec) //nanoseconds

}

struct timespec it_interval; //timer period
struct timespec it_value; //timer expiration

Clock functions:

#include <time.h>

int clock_settime (clockid_t clock_id, 
const struct timespec *tp)

int clock_gettime (clockid_t clock_id, 
struct timespec *tp)

int clock_getres (clockid_t, clock_id, 
struct timespec *res)

errno:
EINVAL  
ENOSYS  
EPERM  

Timer functions:

int timer_create (clockid_t clock_id, 
struct sigevent *evp, timer_t *timerid)

int timer_delete (timer_t timerid)

errno:
EAGAIN 
EINVAL 
ENOSYS

int timer_settime(timer_t timerid, int flags, 
const struct itimerspec *value, 
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struct itimerspec *ovalue)
int timer_gettime(timer_t timerid, 

struct itimerspec *value)
int timer_getoverrun (timer_t timerid)

errno:
EINVAL 
ENOSYS

Sleep function:

int nanosleep (const struct timespec *rqtp, 
struct timespec *rmtp)

errno:
EINTR 
EINVAL 
ENOSYS
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Message Passing

#include <mqueue.h>

mqd_t mq_open (const char *name, int oflag, …);

returns:
A message queue descriptor if successful, (mdq_t - 1) if not.  

errno:
EACCES 
EEXIST 
EINTR 
EINVAL 
EMFILE 
ENAMETOOLONG 
ENFILE 
ENOENT 
ENOSPC 
ENOSYS

#include <mqueue.h>

int mq_close (mqd_t mqdes);
int mq_unlink (const char *name);
int mq_send (mqd_t mqdes, const char *msg_ptr, 

size_t msg_len, unsigned int msg_prio);
int  mq_notify (mqd_t mqdes, 

const struct sigevent *notification);
int mq_setattr (mqd_t mqdes, const struct mq_attr *mgstat, 

struct mq_attr *omqstat);
int mq_getattr (mqd_t mqdes, struct mq-_attr *mqstat);

errno:
EAGAIN 
EBADF 
EBUSY 
EINTR 
EMSGSIZE 
ENOSYS

#include <mqueue.h>

ssize_t mq_receive(mqd_t mgdes, char *msg_ptr, 
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size_t msg_len, unsigned int *msg_prio);

returns:
The length of the selected message in bytes, an error number if not.  

errno:
EAGAIN 
EBADF 
EMSGSIZE 
EINTR 
ENOSYS
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Thread Management

Unless otherwise indicated, all functions return 0 on success and an
error number on failure.

Thread creation attributes:

#include <pthread.h>

int pthread_attr_init (pthread_attr_t  *attr);
int pthread_attr_destroy (pthread_attr_t *attr);
int pthread_attr_setstacksize (pthread_atrr_t *attr, 

size_t stacksize);
int pthread_attr_getstacksize (const pthread_attr_t *attr, 

size_t *stacksize);
int pthread_attr_setstackaddr (pthread_attr_t *attr, 

void *stackaddr);
int pthread_attr_getstackaddr (const pthread_attr_t *attr, 

void **stackaddr);
int pthread_attr_setdetachstate (pthread_attr_t *attr, 

int detachstate);
int pthread_attr_getdetachstate 

(const pthread_attr_t *attr, int *detachstate);

errno:
EINVAL 
ENOMEM 
ENOSYS

Thread operations:

#include <pthread.h>

int pthread_create (pthread_t *thread, 
const pthread_attr_t *attr, 
void *(start_routine)(void *), void *arg);

int pthread_join (pthread_t thread, void **value_ptr);
int pthread_detach (pthread_t thread);

errno:
EAGAIN 
EDEADLK 
EINVAL 
ESRCH
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void pthread_exit (void *value_ptr);

returns:
This function does not return.

pthread_t pthread_self (void);

returns:
The ID of the calling thread.

int pthread_equal (pthread_t t1, pthread_t t2);

returns:
A nonzero value if t1 equals t2, 0 if not. 

void *pthread_getspecific (pthread_key_t key);

returns:
The thread-specific data value associated with the given key when
successful.

Thread cancellation:

#include <pthread.h>

int pthread_cancel (pthread_t thread);
int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);

errno:
ESRCH 
EINVAL

void pthread_testcancel (void );
void pthread_cleanup_push (void (*routine)(void *), 

void *arg);
void pthread_cleanup_pop (int execute);

No return values.

Thread-specific data:

#include <pthread.h>
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int pthread_key_create (pthread_key_t *key, 
void (*destructor)(void *));

int pthread_setspecific (pthread_key_t key, 
const void *value);

int pthread_key_delete (pthread_key_t key);

errno:
EAGAIN 
EINVAL 
ENOMEM 

Real-Time Extensions to POSIX (IEEE 1003.1d) •  75



Reference



Key Linux Commands

Below are some of the most useful Linux commands:

cat filename The cat command scrolls the contents of the
file filename across the screen.

cd directoryname The cd command changes the directory you
are in. There are a variety of parameters that
you can put into directoryname.

cd .. Moves you up one directory.

cd ~ Moves you to your home directory. You can
also move to your home directory by putting
nothing in the directory name parameter.

cd name Move you to the name directory. For more
details on these commands, such as options
and parameters, please read the man pages
supplied in the Linux distribution.

cp oldfile newfile The cp command lets you copy oldfile to
newfile.

dir directoryname The dir command displays the contents of 
the directory directoryname. If you leave
directoryname blank, it will display the con-
tents of the current directory.

echo string The echo command prints the string string to
the display or can be redirected to a file,
device, program, or your shell.

find directory- The find command searches the directory
tostartsearch directorytostartsearch, and all subdirectories,
filename or the file filename, and actionforlist is 
actionforlist what the command does with the list.

grep text file The grep command searches the file file for
the text pattern text and prints to the screen
all of the portions of the file in which text was
found.
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insmod module The insmod command inserts the module
module into the kernel. You must be logged in
as root or have super-user privileges to use
this command.

less filename less is a program that displays the contents of
the file filename to the screen like the more
program. less allows you to move backwards
in the file as opposed to more, which only
allows you to move forward through the file.

ls directoryname The ls command lists the contents of the
directory directoryname. You can change the
format of the printed list via options that can
found in the man page for ls. If you leave
directoryname blank, it will list the contents
of the current directory.

lsmod The lsmod command lists all of the modules
that have been inserted into the system.

make make is a utility that finds out which parts of a
large program need to be recompiled and
issues the commands needed to do the
recompilation.

man subject The man command formats the online manual
pages for the subject subject and displays
that information to the screen. It is very useful
because it gives very detailed information
about commands and other things. It is
advised that you read the man pages on any
of the commands you look up in this appendix.

mkdir directoryname The command mkdir creates the directory
directoryname in the current directory you are
in, unless you give a full path name for direc-
toryname, which will then create it there.

more filename more is a program that displays the contents of
the file filename to the screen like the less pro-
gram. more only allows you to move forward in
the file as opposed to less, which allows you to
move in both directions through the file.
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mount directoryname The mount command attaches the filesystem
to the directory directoryname. If directory-
name is left blank, the command will list all of
the currently mounted filesystems.

mv object1 The mv command moves object1 into
[object2 or object2 or into destinationlocation. In other 
destinationlocation] words, you can move a file into another file, 

or you can move a file into a directory.

ps The ps command displays a snapshot of all
the current processes.

pwd The pwd command displays the path of the
current directory you are in.

rm filename The rm command removes the file filename
from the system. Be very careful with this
command because there is no way of retriev-
ing the file once it has been removed.

rmdir directoryname The rmdir command allows you to remove
the empty directory directoryname.
Remember, directoryname must be empty.

rmmod module The rmmod command removes the module
module from the kernel. You must be logged
in as root, or have super-user privileges, to
use this command.

su The su command allows you to have super-
user privileges. It will ask you for a password.
When it does, you must put in root’s pass-
word. It is now as if you have logged in as
root.

umount The umount command detaches the 
directoryname filesystem from the directory directoryname.

Prints the clock frequency at which the system
processor is running. The units are in MHz.
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Key TimeSys Linux Commands

These are some of the key commands for the Resource Kernel com-
ponent of TimeSys Linux.

clockfreq Prints the clock frequency at which the system
processor is running. The units are in MHz.

rkattach <resource Attaches to the specified resource set the list
set in hex> of specified processes.
<process id>
[process id] ...

RKcleanRS Destroys all resource sets and their associated
reserves in the system.

rkdetach <resource Destroy the specified resource set(s).
set in hex>
[resource set] ...

rkdetach <resource Detach from the specified resource set the set
in hex> list of specified processes.
<processid>
[process id]...

rkexec --newrset Execute the specified process creating a new
--cpu [time in us] resource set (or specify an existing resource
--period[period in set to use, using a --rset option). The CPU
us] -- deadline reservation parameters (CPU time, period and

[deadline in us] deadline) can be specified.
--hard (or --[soft]
--exec `<args>` 

rklist List the parameters of the current resource
sets and their reservations in the system.
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Glossary of Terms and Concepts

The following definitions apply to terms used throughout this manual,
and are derived from the “Handbook of Real-Time Linux.” A clear
understanding of these terms is very useful for anyone working with
real-time Linux.

Action The smallest decomposition of a response; a
segment of a response that cannot change
system resource allocation. In TimeWiz, an
action must be bound to a (physical) RESOURCE

before it is analyzed. An action can also use
zero, one, or more logical resources.

Aperiodic event An event sequence whose arrival pattern is
not periodic.

Average-case The average response time of a response’s
response time jobs within a given interval. In TimeWiz, this is

obtained through simulation. It is possible that
there is a wide discrepancy between the aver-
age- and worst-case response times for a par-
ticular task. In many real-time systems (partic-
ularly for hard real-time tasks), the worst-case
response time must be within a well-specified
interval.

Blocking The act of a lower-priority task delaying the
execution of a higher-priority task; more com-
monly known as priority inversion. Such priori-
ty inversion takes more complex forms in dis-
tributed and shared memory implementations.

Blocking time The delay effect (also called the “duration of
priority inversion”) caused to events with high-
er-priority responses by events with lower-pri-
ority responses.

Bursty arrivals An arrival pattern in which events may occur
arbitrarily close to a previous event, but over
an extended period of time the number of
events is restricted by a specific event density;
that is, there is a bound on the number of
events per time interval. Bursty arrivals are
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modeled in TimeWiz using their minimum
interarrival time and their resource consump-
tion in that interval.

Critical section Period during which a real-time task is holding
onto a shared resource.

Data-sharing A policy specific to a (physical) resource that
policy determines how logical resources bound to

the (physical) resource can be accessed.
Some schemes do not provide any protection
against priority inversion, while others provide
varying degrees of protection. TimeWiz sup-
ports multiple data-sharing policies including
FIFO (no protection against priority inversion),
PRIORITY INHERITANCE PROTOCOL, PRIORITY CEILING

PROTOCOL, HIGHEST LOCKER PRIORITY PROTOCOL,
and KERNELIZED MONITOR (non-preemptive exe-
cution) policies.

Deadline- A fixed-priority algorithm in which the highest
monotonic priority is assigned to the task with the earliest
scheduling relative delay constraint (deadline) from each
algorithm instance of its arrival. The priorities of the

remaining tasks are assigned monotonically (or
consistently) in order of their deadlines.

This algorithm and the earliest-deadline sched-
uling algorithm are not the same. In this algo-
rithm, all instances of the same task have the
same priority. In the earliest-deadline schedul-
ing algorithm, each instance of the same task
has a different priority, equal to the absolute
deadline (time) by which it must be completed.
The rate-monotonic scheduling algorithm and
the deadline-monotonic algorithm are one and
the same when the relative deadline require-
ment and periods are equal (which happens
often).

Deterministic A system in which it is possible to determine
system exactly what is or will be executing on the

processor during system execution.
Deterministic systems result from the use of
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certain scheduling policies for groups of
processes.

Dynamic-priority An allocation policy that uses priorities to
scheduling decide how to assign a resource. Priorities
policy change from instance to instance of the same

task (and can also vary during the lifetime of
the same instance of a task). The earliest-
deadline scheduling algorithm is an example of
a dynamic-priority scheduling policy.

Earliest-deadline A dynamic-priority assignment policy in which
scheduling the highest priority is assigned to the task with

the most imminent deadline. 

Event A change in state arising from a stimulus within
the system or external to the system; or one
spurred by the passage of time. An event is
typically caused by an interrupt on an input port
or a timer expiry. See also TRACE and TRIGGER.

Execution time Amount of time that a response will consume
on a CPU.

Fixed-priority An allocation policy that uses priorities to
scheduling policy decide how to assign a resource. The priority

(normally) remains fixed from instance to
instance of the same task. Rate-monotonic
and deadline-monotonic scheduling policies
are fixed-priority scheduling policies.

Hardware-priority An allocation policy in which the priority of a
scheduling policy request for the backplane is determined by a

hardware register on each card that plugs into
the backplane. Presumably, the hardware pri-
ority value reflects the importance of the
device that is connected to the adapter.

Highest-locker A DATA-SHARING POLICY in which an action using
priority a logical resource is executed at the highest

priority of all actions that use the logical
resource (i.e. at the PRIORITY CEILING of the
resource). This protocol provides a good level
of control over priority inversion.
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Input jitter The deviation in the size of the interval
between the arrival times of a periodic action.

Kernelized A DATA-SHARING POLICY in which an action using
monitor a logical resource is executed in non-preemp-

tive fashion (i.e., at kernel priority).  This proto-
col provides a good level of control over priori-
ty inversion except when one or more actions
using a logical resource has a long execution
time (relative to the timing constraints of other
higher-priority tasks).

Logical resource A system entity that is normally shared across
multiple tasks. A logical resource must be
bound to a physical resource like a processor,
and is modeled in TimeWiz as an action with a
mutual exclusion requirement. Also, see DATA-
SHARING POLICY.

Output jitter The deviation in the size of the interval
between the completion times of a periodic
action.

Period The interarrival interval for a periodic event
sequence. Also, see INPUT JITTER.

Periodic event An event sequence with constant interarrival
intervals. Described in terms of the period (the
interarrival interval) and a phase value.

Preemption The act of a higher-priority process taking con-
trol of the processor from a lower-priority task.

Priority ceiling This is associated with each logical resource
and corresponds to the priority of the highest-
priority action that uses the logical resource.

Priority ceiling A data-sharing policy in which an action using 
protocol a logical resource can start only if its priority is

higher than the PRIORITY CEILINGS of all logical
resources locked by other responses. This
protocol provides a good level of control over
priority inversion.
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Priority A DATA-SHARING POLICY in which an action using
inheritance a logical resource executes at the highest of
protocol its own priority or the highest priority of any

action waiting to use this resource. This proto-
col provides an acceptable level of control
over priority inversion.

Priority inversion This is said to occur when a higher-priority
action is forced to wait for the execution of a
lower-priority action. This is typically caused by
the use of logical resources, which must be
accessed mutually exclusively by different
actions. Uncontrolled priority inversion can
lead to timing constraints being violated at rel-
atively low levels of RESOURCE UTILIZATION. Also
see BLOCKING and BLOCKING TIME.

Rate-monotonic Algorithm in which highest priority is assigned
scheduling to the task with the highest rate (in other
algorithm words, with the shortest period) and the priori-

ties of the remaining tasks are assigned monot-
onically (or consistently) in order of their rates.

Rate-monotonic A special case of fixed-priority scheduling that
scheduling uses the rate of a periodic task as the basis

for assigning priorities to periodic tasks. Tasks
with higher rates are assigned higher priorities.

Real-time system A system that controls an environment by
receiving data, processing it, and taking action
or returning results quickly enough to affect
the functioning of the environment at that time.

A system in which the definition of system cor-
rectness includes at least one requirement to
respond to an event with a time limitation.

Resource A physical entity such as a processor, a back-
plane bus, a network link, or a network router
which can be used by one or more actions. A
resource may have a resource allocation policy
(such as rate-monotonic scheduling) and a
data-sharing policy.
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Response A time-ordered sequence of events arising from
the same stimulus. In TimeWiz, an event can
trigger one or more actions to be executed.

Responses Multiple time-ordered sequences of events,
each arising from a distinct event. Event
sequences that result in responses on the
same resource often cause resource con-
tention that must be managed through a
resource allocation policy.

Task A schedulable unit of processing composed 
of one or more actions. Synonymous with
process.

Tracer A stimulus. Synonymous with a single instance
of an EVENT within TimeWiz, and is used to
represent an end-to-end data flow sequence
spanning multiple physical resources. An end-
to-end timing constraint is normally associated
with a tracer event. TimeWiz computes both
worst-case and average-case response times
to a tracer using analysis and simulation
respectively. Also see TRIGGER.

Trigger A stimulus with an arrival pattern. Mostly syn-
onymous with the term “EVENT” within TimeWiz
but is used to name an event whose response
consists of a chain of actions executing on, at
most, a single resource. 

In TimeWiz, a trigger is bound to a (physical)
resource when one or more actions in its cor-
responding response are bound to a (physical)
resource. Also see TRACER.

Utilization The ratio of a response's usage to its period,
usually expressed as a percentage. For a CPU
resource, this is execution time divided by
period.

Worst-case The maximum possible response time of a
response time response’s jobs (instances). Also see OUTPUT

JITTER.
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