
SYSTEM_CONFIGURATION Design name 1 - page Company name

STOOD 4.3 (c) TNI date issue

SYSTEM_CONFIGURATION IS

ROOT_OBJECTS
--|\\Groslulu\home4\stood\stood4.3\libs\calendar|--,
--|\\Groslulu\home4\stood\stood4.3\examples\nt_console|--,
--|\\Groslulu\home4\stood\stood4.3\examples\philosophers|--,
--|\\Groslulu\home4\stood\stood4.3\examples\screen|--,
--|\\Groslulu\home4\stood\stood4.3\libs\standard|--,
--|\\Groslulu\home4\stood\stood4.3\libs\text_io|--

GENERIC
--|\\Groslulu\home4\stood\stood4.3\libs\discrete_random|--,
--|\\Groslulu\home4\stood\stood4.3\examples\random_generic|--

END

Design Tree

room

windows

phil

society

chop

philosophers

screen

standard

calendar

text_io

SYSTEM_CONFIGURATION

Inheritance Tree

Window

Philosopher

Stick

SYSTEM_CONFIGURATION Design name 2 - page Company name

STOOD 4.3 (c) TNI date issue

Structural (types) Diagram

SYSTEM_CONFIGURATION

type

philosophers

screen

Height
Width
Position

standard

Boolean
Integer
Natural
Positive
Float
Character
Wide_Character
String
Wide_String
Duration

calendar

Time
Year_Number
Month_Number
Day_Number
Day_Duration

text_io

File_Type
File_Mode
Count
Positive_Count
Field
Number_Base
Type_Set

Functional (oper.) Diagram

SYSTEM_CONFIGURATION

operation

philosophers

*StartASER

screen

Beep
ClearScreen
MoveCursor

standard

calendar

Clock
Year
Month
Day
Seconds
Split
Time_Of

text_io

{File_Management}
{Control_Of_Default}
{Buffer_Control}
{Line_And_Page_Length}
{Column_Line_And_Page_Control}
{Character_Input_Output}
{String_Input_Output}

SYSTEM_CONFIGURATION Design name 3 - page Company name

STOOD 4.3 (c) TNI date issue

List of Requirements
BR1/Concurrent_philosophers:
BR2/Shared_chopsticks:
BR3/Dynamic_events_report:
BR4/Synchronous_events_report:
BR5/Dining_room_states:
BR6/Philosopher_states:
FR1/Prepare&begin_diner:
FR2/Provide_chopsticks:
FR3/Report_events:
FR4/Open&initialize_window:
FR5/Write_messages:
FR6/Start_eating:
SR1/Dining_room_seats:
SR2/Philosophers:
SR3/Chopsticks:
SR4/Display_windows:
SR5/Simulation_timing:

philosophers Design name 4 - page Company name

STOOD 4.3 (c) TNI date issue

OBJECT philosophers IS

 PASSIVE

pragmas
PRAGMA line_feed
(option => 1)

PRAGMA line_feed
(option => 2)

PRAGMA main
(operation_name => start,
 unit_name => run)

PRAGMA no_subunits
PRAGMA comment
PRAGMA compiler
(name => gnat,
 options => --| |--)

DESCRIPTION

PROBLEM

philosophers Design name 5 - page Company name

STOOD 4.3 (c) TNI date issue

Sketch of the Problem

Referenced Documents (text)
This application is the HOOD version of "Dining Philosophers - Ada95 edition" from Michael B. Feldman, The GeorgGeorg
George Washington University, July 1995.
HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD toolset.

Analysis of Requirements

Structural Requirements (text)
This application should manage:
SR1: the dining room (cf.SR1/Dining_room_seats:)
SR2: five instances of Philosopher (cf.SR2/Philosophers:)
SR3: five instances of shared chopstick (cf.SR3/Chopsticks:)
SR4: and display graphically simulation events on screen windows (cf.SR4/Display_windows:)

Philosophers and chopsticks implementation is shared into two distinct parts:

philosophers Design name 6 - page Company name

STOOD 4.3 (c) TNI date issue

- abstract description within a relevant HOOD4 class
- concrete instantiation as data inside dining room

Functionnal Requirements (text)
The unique functional requirement at this higher level module is to launch the application. Start procedure is used aa
as main subprogram of the application.
FR1: start the diner (cf.FR1/Prepare&begin_diner:)

Behavioural Requirements (text)
BR1: Each Philosopher should behave concurrently. (cf.BR1/Concurrent_philosophers:)
BR2: Each chopsticks must be shared between two Philosophers. (cf.BR2/Shared_chopsticks:)
BR3: Dining room must initiate the simulation and report events dynamically. (cf.BR3/Dynamic_events_report:)

Local Environment

Parent General Description (text)
In addition to usual Ada libraries (STANDARD, TEXT_IO and CALANDAR), a dedicated environment module is
used to display information to the screen.
This "screen" module acts as a display device interface for our application. Two implementations may be used:
- an ANSI terminal emulator for UNIX workstations.
- a console interface for Windows 95 or NT PCs.

A generic module "random_generic" provides an interface to Ada.Numerics.Discrete_Random to implement an intint
integer pseudo-random number generator.

SOLUTION

General Strategy (text)
This application was manually reverse engineered from Michael B. Feldman's Ada sources.
Each package pair is represented by a hood module, but of various kinds. Chosen strategy was to be able to re-generatere-generate
re-generate code as close as possible from original one.
Other design choices could of course lead to other solutions.

Identification of Child Modules (text)
Philosophers application may be broken down into five modules:
- "society" simply provides a list of philosopher's name and ID. It is designed as a simple passive HOOD4 object.
- "room" describes the simulator logics, and instanciates statically main control task, and dynamically each philosopherphilosopher
philosopher. It is designed as an active HOOD4 object.
- "phil" is an abstract description of a dining philosopher. It is designed as an active HOOD4 class.
- "chop" is an abstract description of a shared chopstick. It is designed as a passive HOOD4 class with concurrency concon
constrained operations.
- "window" is an abstract simple window manager. Is is designed as a passive HOOD4 class.

Structural Description

Identification of Data Structures (text)
None.

philosophers Design name 7 - page Company name

STOOD 4.3 (c) TNI date issue

Structural (types) Diagram

philosophers

type

screen

First, Last, Current

discriminant

"array of Stick_Ptr"
"array of Window"

"array of Philosopher_Ptr"

roomA

windows

Window

philA

Philosopher
Philosopher_Ptr
States

society

Unique_DNA_Codes

chop

Stick
Stick_Ptr

Functional Description

Identification of Operations (text)
Start is the main subprogram which calls room.start_serving.

Grouping Operations (text)
None.

philosophers Design name 8 - page Company name

STOOD 4.3 (c) TNI date issue

Functional (oper.) Diagram

philosophers

*StartASER

operation

screen

starting

reporting

using

displaying

CALENDAR

TEXT_IO

roomA

*start_servingASER

*report_stateHSER

get_stick

windows

open
title
borders
movecursor
put#1
put#2
new_line

philA

start_eatingLSER

society

get_name

chop

*pick_upRWER

*put_downRWER

Behavioural Description

Identification of Local Behaviour (text)
Start is asynchronous.

Justification of Design Decisions (text)
Design choices comply with original Ada source code.
Another solution would have been to instantiate statically each Philosopher, and perhaps each chopstick. In this case thth
they would have been designed respectively as instances of active generic modules and instances of passive generic momo
modules.

philosophers Design name 9 - page Company name

STOOD 4.3 (c) TNI date issue

PROVIDED_INTERFACE

OPERATIONS

Start

operation spec. description (text)
Main procedure.

operation declaration (hood)
Start;

real time attributes (hood)
WCET

OBJECT_CONTROL_STRUCTURE

obcs spec. description (text)
The application is launched asynchronously.

constrained operations
Start CONSTRAINED_BY ASER STATE;

REQUIRED_INTERFACE
OBJECT calendar;
TYPES
Time;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
Clock;

EXCEPTIONS
NONE

OBJECT screen;
TYPES
Height; Position; Width;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
MoveCursor; ClearScreen;

EXCEPTIONS
NONE

OBJECT standard;
TYPES
Natural; Integer; Positive; Boolean; Character; String; Duration;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

OBJECT text_io;
TYPES
NONE

CONSTANTS
NONE

OPERATION_SETS

philosophers Design name 10 - page Company name

STOOD 4.3 (c) TNI date issue

NONE
OPERATIONS
Put; New_Line;

EXCEPTIONS
NONE

INTERNALS

OBJECTS
room;
windows;
phil;
society;
chop;

OPERATIONS

Start

implemented_by
room.start_serving

OBJECT_CONTROL_STRUCTURE

implemented_by
room;

END philosophers

room Design name 11 - page Company name

STOOD 4.3 (c) TNI date issue

OBJECT room IS

 ACTIVE

DESCRIPTION

PROBLEM

Statement of the Problem (text)
Room manages the simulation:
- intanciates Philosophers and Sticks.
- assigns each Philosopher a seat and his chopsticks.
- creates windows on the screen.
- displays information dynamically inside each window.(cf.FR3/Report_events:)

Referenced Documents (text)
This application is the HOOD version of "Dining Philosophers - Ada95 edition" from Michael B. Feldman, The GeorgGeorg
George Washington University, July 1995.
HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD toolset.

Analysis of Requirements

Structural Requirements (text)
Room must manage:
SR1: dining room seats (cf.SR1/Dining_room_seats:)
SR2: Philosophers (cf.SR2/Philosophers:)
SR3: chopsticks (cf.SR3/Chopsticks:)
SR4: display windows (cf.SR4/Display_windows:)
SR5: simulation timing (cf.SR5/Simulation_timing:)

Functionnal Requirements (text)
Room provides thre functional services:
FR1: prepare and begin the diner. (cf.FR1/Prepare&begin_diner:)
FR2: provide chopsticks to Philosophers. (cf.FR2/Provide_chopsticks:)
FR3: report events to outside world. (cf.FR3/Report_events:)

Behavioural Requirements (text)
Dining room behaviour should be as follow:
BR3: start diner asynchronously (cf.BR3/Dynamic_events_report:)
BR4: report event synchronously (cf.BR4/Synchronous_events_report:)
BR5: Dining room has two possible states (Waiting or Dining) (cf.BR5/Dining_room_states:)

Local Environment

Parent General Description (text)
Please refer to parent module description.

SOLUTION

General Strategy (text)
Dining room is designed as an active HOOD4 object, as it must have its own control flow.
Structural element (types, constants and data) are all hidden inside internal part.
Behaviour is described by a HOOD4 STD (State Transtion Diagram) and constraints on provided operations, and encaenca
encapsulated inside a HOOD OBCS (Object Control Structure).
Implementation of functional services are descibed directly inside HOOD OPCSs (Operation Control Structures).

Code generator will produce a package containing a task called OBCS.
(cf.BR5/Dining_room_states:)

room Design name 12 - page Company name

STOOD 4.3 (c) TNI date issue

Structural Description

Identification of Data Structures (text)
Structural elements are all hidden inside internals of this module, as none of them is required from outside.
They are listed below:

SR1:
- type Table_Type describes the table.
- constant Table_Size specifies the size of the table (5 seats).
- data Phil_Seats is used to allocate a seat to each Philosopher.
SR2:
- data P1 to P5 are five instances of Phil.Philosopher.
- data Phils is an array of pointers on these Philosophers.
SR3:
- data S1 to S5 are five instances of Chop.Stick.
- data Sticks is an array of pointers on these chopsticks.
SR4:
- data Phil_Windows is an array of five Windows.window.
SR5:
- data Start_Time is initialized when simulation starts.
- data T provides current simulation time.

Functional Description

Identification of Operations (text)
Operations provided by dining room are:

FR1:
Start_Serving: sets up the table and start the diner.
It is called by main procedure of the program.
FR2:
Get_Stick: implements the request from a Philosopher to pick up a chopstick.
This procedure didn't exist inside original Ada code where chopsticks were declared as public data, and were thus dd
directly visible from Phil module. Provided data being forbidden when designing with HOOD, chopstick instances ww
were declared within the internals, and Get_Stick access function was added to implement remote requests.
FR3:
Report_State: is used by Philosophers to indicate in which internal state they are.

Grouping Operations (text)
None.

Behavioural Description

Identification of Local Behaviour (text)
Dining room behaviour is represented by a State Transition model and constraints on operation execution requests:

BR5: Dining room has two distinct states:
- waiting state, identified by internal state variable "started" set to FALSE, where Room may only receive "Start_Se"Start_Se
"Start_Serving" execution requests.
- dining state, identified by internal state variable "started" set to TRUE, where Room may only receive "Report_Sta"Report_Sta
"Report_State" execution requests.

BR3: Start_Serving has an asynchronous execution request (ASER).

BR4: Report_State has a highly synchronous execution request (HSER), so that Philosopher 's internal state doesn't
change while current state is displayed on relevant window.

Justification of Design Decisions (text)
A few changes in initial source code were required to fit HOOD4 design rules:
- Sticks variable was initially declared within package spec, which is forbidden with HOOD, so it was moved into packpack
package body, and an additional access function (Get_Stick) may be used to pick_up on one of the five chopsticks.
- As chopsticks are instances of a protected type, which is thus a limited type, they cannot be returned directly by an aa
access function. Sticks thus became an array of pointers on chopsticks.
- To comply with standard HOOD code generation rules, task entries are not directly called from outside. Remote clienclien
clients should call Room.Start_Serving and Room.Report_State which remame task entries of the same name. For the ss

room Design name 13 - page Company name

STOOD 4.3 (c) TNI date issue

same reason, relevant bodies are implemented into additional internal OPCS_Start_serving and OPCS_Report_State prpr
procedures.
- Within original code, main control task was called "Maitre_D". Its name become "OBCS" when generated from a HOHO
HOOD design. Task body is also automatically generated from STD and operation constraints: this implies changes to
code structure.

PROVIDED_INTERFACE

OPERATIONS

start_serving

operation spec. description (text)
Room.Start_Serving is called by main procedure and renames OBCS.Start_Serving task entry.
This procedure has no parameter.
(cf.FR1/Prepare&begin_diner:)

operation declaration (hood)
start_serving;

real time attributes (hood)
WCET

report_state

operation spec. description (text)
Room.Report_State is called by Phil.Start_Eating and renames OBCS.Report_State task entry.
This procedure has four parameters:
- Which_Phil: identifies actual Philosopher sending the message.
- State: current state of sender.
- How_Long: length of current state (or identifier of used chopstick).
- Which_Meal: current meal.
(cf.FR3/Report_events:)

operation declaration (hood)
report_state(
Which_Phil : in Society.Unique_DNA_Codes;
Which_State : in Phil.States;
How_Long : in Natural := --|0|--;
Which_Meal : in Natural := --|0|--

);

real time attributes (hood)
WCET

get_stick

operation spec. description (text)
Room.Get_Stick is an access function to internal Sticks variable.
It requires a chopstick ID (Which_Stick) to return a pointer to relevant protected object.
(cf.FR2/Provide_chopsticks:)

operation declaration (hood)
get_stick(which_Stick : in Positive) return Chop.Stick_Ptr;

real time attributes (hood)
WCET

room Design name 14 - page Company name

STOOD 4.3 (c) TNI date issue

OBJECT_CONTROL_STRUCTURE

obcs spec. description (text)
A dedicated state variable manages current state of dining room.
This variable "Started" has a default value of "FALSE" and become "TRUE" after Start_Serving has been executed.
Start_Serving and Report_State have both STATE and protocole constraints.

constrained operations
start_serving CONSTRAINED_BY ASER STATE;
report_state CONSTRAINED_BY HSER STATE;

REQUIRED_INTERFACE
OBJECT calendar;
TYPES
Time;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
Clock;

EXCEPTIONS
NONE

OBJECT chop;
TYPES
Stick_Ptr; Stick;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

OBJECT phil;
TYPES
States; Philosopher; Philosopher_Ptr;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
start_eating;

EXCEPTIONS
NONE

OBJECT society;
TYPES
Unique_DNA_Codes;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
get_name;

EXCEPTIONS
NONE

OBJECT standard;
TYPES
Natural; Integer; Positive; Boolean;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
NONE

EXCEPTIONS

room Design name 15 - page Company name

STOOD 4.3 (c) TNI date issue

NONE
OBJECT windows;
TYPES
Window;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
open; borders; title; put#1; new_line;

EXCEPTIONS
NONE

DATAFLOWS
starting => phil;
displaying => windows;

INTERNALS

TYPES

Table_Type

type description (text)
Identifies the possible locations around the table.

type attributes (hood)
ATTRIBUTES NONE

type enumeration (hood)
ENUMERATION NONE

type definition (ada)
subtype Table_Type is Positive range 1..Table_Size;

CONSTANTS

Table_Size

constant description (text)
Specifies the total number of seats around the table. It is limited to five in this example.

constant definition (ada)
Table_Size : constant := 5;

DATA

S1

data description (text)
First chopstick shared between seats 5 and 1.

data declaration (ada)
S1 : aliased Chop.Stick;

room Design name 16 - page Company name

STOOD 4.3 (c) TNI date issue

data access from pseudo_code
(da) room.S1 IS USED BY NONE

data access from Ada code
(da) room.S1 IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.S1 IS USED BY NONE

data access from C++ code
(da) room.S1 IS USED BY NONE

S2

data description (text)
second chopstick shared between seats 1 and 2.

data declaration (ada)
S2 : aliased Chop.Stick;

data access from pseudo_code
(da) room.S2 IS USED BY NONE

data access from Ada code
(da) room.S2 IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.S2 IS USED BY NONE

data access from C++ code
(da) room.S2 IS USED BY NONE

S3

data description (text)
Third chopstick shared between seats 2 and 3.

data declaration (ada)
S3 : aliased Chop.Stick;

data access from pseudo_code
(da) room.S3 IS USED BY NONE

data access from Ada code
(da) room.S3 IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.S3 IS USED BY NONE

data access from C++ code
(da) room.S3 IS USED BY NONE

room Design name 17 - page Company name

STOOD 4.3 (c) TNI date issue

S4

data description (text)
Fourth chopstick shared between seats 3 and 4.

data declaration (ada)
S4 : aliased Chop.Stick;

data access from pseudo_code
(da) room.S4 IS USED BY NONE

data access from Ada code
(da) room.S4 IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.S4 IS USED BY NONE

data access from C++ code
(da) room.S4 IS USED BY NONE

S5

data description (text)
Fifth chopstick shared between seats 4 and 5.

data declaration (ada)
S5 : aliased Chop.Stick;

data access from pseudo_code
(da) room.S5 IS USED BY NONE

data access from Ada code
(da) room.S5 IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.S5 IS USED BY NONE

data access from C++ code
(da) room.S5 IS USED BY NONE

Sticks

data description (text)
An array of pointers to the chopsticks.

data declaration (ada)
Sticks : array (Table_Type) of Chop.Stick_Ptr;

data access from pseudo_code
(da) room.Sticks IS USED BY NONE

data access from Ada code
(da) room.Sticks IS USED BY
(op) room.get_stick [R]
(op) room.start_serving [R]

room Design name 18 - page Company name

STOOD 4.3 (c) TNI date issue

data access from C code
(da) room.Sticks IS USED BY NONE

data access from C++ code
(da) room.Sticks IS USED BY NONE

P1

data description (text)
First Philosopher.

data declaration (ada)
P1 : aliased Phil.Philosopher(My_ID => 1);

data access from pseudo_code
(da) room.P1 IS USED BY NONE

data access from Ada code
(da) room.P1 IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.P1 IS USED BY NONE

data access from C++ code
(da) room.P1 IS USED BY NONE

P2

data description (text)
Second Philosopher.

data declaration (ada)
P2 : aliased Phil.Philosopher(My_ID => 2);

data access from pseudo_code
(da) room.P2 IS USED BY NONE

data access from Ada code
(da) room.P2 IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.P2 IS USED BY NONE

data access from C++ code
(da) room.P2 IS USED BY NONE

P3

data description (text)
Third Philosopher.

data declaration (ada)
P3 : aliased Phil.Philosopher(My_ID => 3);

room Design name 19 - page Company name

STOOD 4.3 (c) TNI date issue

data access from pseudo_code
(da) room.P3 IS USED BY NONE

data access from Ada code
(da) room.P3 IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.P3 IS USED BY NONE

data access from C++ code
(da) room.P3 IS USED BY NONE

P4

data description (text)
Fourth Philosopher.

data declaration (ada)
P4 : aliased Phil.Philosopher(My_ID => 4);

data access from pseudo_code
(da) room.P4 IS USED BY NONE

data access from Ada code
(da) room.P4 IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.P4 IS USED BY NONE

data access from C++ code
(da) room.P4 IS USED BY NONE

P5

data description (text)
Fifth Philosopher.

data declaration (ada)
P5 : aliased Phil.Philosopher(My_ID => 5);

data access from pseudo_code
(da) room.P5 IS USED BY NONE

data access from Ada code
(da) room.P5 IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.P5 IS USED BY NONE

data access from C++ code
(da) room.P5 IS USED BY NONE

room Design name 20 - page Company name

STOOD 4.3 (c) TNI date issue

Phils

data description (text)
An array of pointers to the Philosophers.

data declaration (ada)
Phils : array (Table_Type) of Phil.Philosopher_Ptr;

data access from pseudo_code
(da) room.Phils IS USED BY NONE

data access from Ada code
(da) room.Phils IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.Phils IS USED BY NONE

data access from C++ code
(da) room.Phils IS USED BY NONE

Phil_Windows

data description (text)
An array of windows. One window for each seat.

data declaration (ada)
Phil_Windows : array (Table_Type) of Windows.Window;

data access from pseudo_code
(da) room.Phil_Windows IS USED BY NONE

data access from Ada code
(da) room.Phil_Windows IS USED BY
(op) room.report_state [R]
(op) room.start_serving [R]

data access from C code
(da) room.Phil_Windows IS USED BY NONE

data access from C++ code
(da) room.Phil_Windows IS USED BY NONE

Phil_Seats

data description (text)
An array to indicate which seat each Philosopher occupies:
Philosopher 1 occupies seat 1;
Philosopher 2 occupies seat 3;
Philosopher 3 occupies seat 5;
Philosopher 4 occupies seat 4;
Philosopher 5 occupies seat 2;

data declaration (ada)
Phil_Seats : array (Society.Unique_DNA_Codes) of Table_Type;

room Design name 21 - page Company name

STOOD 4.3 (c) TNI date issue

data access from pseudo_code
(da) room.Phil_Seats IS USED BY NONE

data access from Ada code
(da) room.Phil_Seats IS USED BY
(op) room.report_state [R]
(op) room.start_serving [R]

data access from C code
(da) room.Phil_Seats IS USED BY NONE

data access from C++ code
(da) room.Phil_Seats IS USED BY NONE

T

data description (text)
Current time obtained by Calendar.Clock.

data declaration (ada)
T : Natural;

data access from pseudo_code
(da) room.T IS USED BY NONE

data access from Ada code
(da) room.T IS USED BY
(op) room.report_state [R]

data access from C code
(da) room.T IS USED BY NONE

data access from C++ code
(da) room.T IS USED BY NONE

Start_Time

data description (text)
Time when application is launched.

data declaration (ada)
Start_Time : Calendar.Time;

data access from pseudo_code
(da) room.Start_Time IS USED BY NONE

data access from Ada code
(da) room.Start_Time IS USED BY
(op) room.report_state [R]
(op) room.start_serving [R]

data access from C code
(da) room.Start_Time IS USED BY NONE

room Design name 22 - page Company name

STOOD 4.3 (c) TNI date issue

data access from C++ code
(da) room.Start_Time IS USED BY NONE

Started

data description (text)
State variable to switch between "waiting" and "dining" states.
Initial state is "Waiting".

data declaration (ada)
Started : boolean := false;

data access from pseudo_code
(da) room.Started IS USED BY NONE

data access from Ada code
(da) room.Started IS USED BY
(op) room.start_serving [R]

data access from C code
(da) room.Started IS USED BY NONE

data access from C++ code
(da) room.Started IS USED BY NONE

OBJECT_CONTROL_STRUCTURE

obcs body description (text)
OBCS is automatically generated from STD and operation constraints.

state transition diagram

waiting

dining

starting

serving

room Design name 23 - page Company name

STOOD 4.3 (c) TNI date issue

waiting

exiting transitions
starting

state description (text)
Initial state. Started is set to FALSE.

state assignment (ada)
Started := false;

state test (ada)
not Started

dining

entering transitions
starting, serving

exiting transitions
serving

state description (text)
Running state. Started is set to TRUE.

state assignment (ada)
Started := true;

state test (ada)
Started

starting

transition event
start_serving

transition from
waiting

transition to
dining

trans description (text)
This transition is triggered by Start_Serving execution request.
No additional condition, neither exception code is required.

serving

transition event
report_state

transition from
dining

transition to
dining

room Design name 24 - page Company name

STOOD 4.3 (c) TNI date issue

trans description (text)
This transition is triggered by Report_Sta te execution request.
No additional condition, neither exception code is required.
Current state is not changed.

OPERATION_CONTROL_STRUCTURES

OPERATION start_serving IS

operation body description (text)
Performs following actions:
- Calculates Start_Time;
- Puts chopsticks on the table;
- Assigns Philosophers to seats at the table;
- Opens and draw a window to observe each seat;
- Assigns right and left chopsticks to each Philosopher;

used operations
calendar.Clock
windows.open
windows.borders
phil.start_eating

operation code (ada)
begin

 -- starting date is stored:
 Start_Time := Calendar.Clock;

 -- chopsticks are put on the table:
 Sticks :=
 (S1'Access,
 S2'Access,
 S3'Access,
 S4'Access,
 S5'Access);

 -- philosophers are assigned to seats at the table
 Phils :=
 (P1'Access,
 P3'Access,
 P5'Access,
 P4'Access,
 P2'Access);

 -- which seat each phil occupies:
 Phil_Seats := (1, 3, 5, 4, 2);

 -- a window is open for each seat:
 Phil_Windows :=
 (Windows.Open((1, 24), 7, 30),
 Windows.Open((9, 2), 7, 30),
 Windows.Open((9, 46), 7, 30),
 Windows.Open((17, 7), 7, 30),
 Windows.Open((17, 41), 7, 30));

 -- windows borders are drawn:
 for Which_Win in Phil_Windows'range loop
 Windows.Borders(Phil_Windows(Which_Win),'+','|','-');
 end loop;

 -- philosophers are assigned their chopsticks:
 Phils (1).Start_Eating(1, 1, 2);
 Phils (3).Start_Eating(3, 3, 4);
 Phils (2).Start_Eating(2, 2, 3);

room Design name 25 - page Company name

STOOD 4.3 (c) TNI date issue

 Phils (5).Start_Eating(5, 1, 5);
 Phils (4).Start_Eating(4, 4, 5);

 -- dining room state changes:
 Started := true;

call tree from Ada code

(da) room.Start_Time [R]

(op) calendar.Clock

(da) room.Sticks [R]

(da) room.S1 [R]

(da) room.S2 [R]

(da) room.S3 [R]

(da) room.S4 [R]

(da) room.S5 [R]

(da) room.Phils [R]

(da) room.P1 [R]

(da) room.P3 [R]

(da) room.P5 [R]

(da) room.P4 [R]

(da) room.P2 [R]

(da) room.Phil_Seats [R]

(da) room.Phil_Windows [R]

(op) windows.open

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.borders

(da) room.T [R]

(op) calendar.Clock

(da) room.Start_Time [R]

(op) windows.put#2

(op)

(op)

(op) windows.erasetoendofline(op) windows.new_line

(op) windows.title

(da) room.Phil_Windows [R]

(da) room.Phil_Seats [R]

(da) society.Name_Register [R](op) society.get_name

(op) windows.erasetoendofline

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.put#1

(op) windows.new_line

(op) room.report_state

(da) room.Sticks [R](op) room.get_stick

(op) chop.pick_up

(op) chop.put_down

(op) phil.start_eating

(da) room.Started [R]

(op) room.start_serving

END start_serving

OPERATION report_state IS

operation body description (text)
Performs following actions:
- Calculates current time;
- Displays a message on relevant window.

room Design name 26 - page Company name

STOOD 4.3 (c) TNI date issue

used operations
calendar.Clock
windows.title
society.get_name
windows.put
windows.new_line

operation code (ada)
begin

 T := Natural (Calendar.Clock - Start_Time);

 case Which_State is

 when Phil.Breathing =>
 Windows.Title(
 Phil_Windows(Phil_Seats(Which_Phil)),
 Society.Get_Name(Which_Phil), '-');
 Windows.Put(
 Phil_Windows(Phil_Seats(Which_Phil)),
 "T =" & Integer'Image (T) & " " & "Breathing...");
 Windows.New_Line(Phil_Windows(Phil_Seats(Which_Phil)));

 when Phil.Thinking =>
 Windows.Put(
 Phil_Windows(Phil_Seats(Which_Phil)),
 "T =" & Integer'Image (T) & " " & "Thinking"
 & Integer'Image (How_Long) & " seconds.");
 Windows.New_Line(Phil_Windows(Phil_Seats(Which_Phil)));

 when Phil.Eating =>
 Windows.Put(
 Phil_Windows(Phil_Seats(Which_Phil)),
 "T =" & Integer'Image (T) & " " & "Meal"
 & Integer'Image (Which_Meal) & ","
 & Integer'Image (How_Long) & " seconds.");
 Windows.New_Line(Phil_Windows(Phil_Seats(Which_Phil)));

 when Phil.Done_Eating =>
 Windows.Put(
 Phil_Windows(Phil_Seats(Which_Phil)),
 "T =" & Integer'Image (T) & " " & "Yum-yum (burp)");
 Windows.New_Line(Phil_Windows(Phil_Seats(Which_Phil)));

 when Phil.Got_One_Stick =>
 Windows.Put(
 Phil_Windows(Phil_Seats(Which_Phil)),
 "T =" & Integer'Image (T) & " " & "First chopstick"
 & Integer'Image (How_Long));
 Windows.New_Line(Phil_Windows(Phil_Seats(Which_Phil)));

 when Phil.Got_Other_Stick =>
 Windows.Put(
 Phil_Windows(Phil_Seats(Which_Phil)),
 "T =" & Integer'Image (T) & " " & "Second chopstick"
 & Integer'Image (How_Long));
 Windows.New_Line(Phil_Windows(Phil_Seats(Which_Phil)));

 when Phil.Dying =>
 Windows.Put(
 Phil_Windows(Phil_Seats(Which_Phil)),
 "T =" & Integer'Image (T) & " " & "Croak");
 Windows.New_Line(Phil_Windows(Phil_Seats(Which_Phil)));

 end case; -- Which_State

room Design name 27 - page Company name

STOOD 4.3 (c) TNI date issue

call tree from Ada code

(da) room.T [R]

(op) calendar.Clock

(da) room.Start_Time [R]

(op) windows.put#2

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.erasetoendofline(op) windows.new_line

(op) windows.title

(da) room.Phil_Windows [R]

(da) room.Phil_Seats [R]

(da) society.Name_Register [R](op) society.get_name

(op) windows.erasetoendofline

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.put#1

(op) windows.new_line

(op) room.report_state

END report_state

OPERATION get_stick IS

operation body description (text)
Just returns a pointer to specified chopstick.

operation code (ada)
begin
 return Sticks(Which_Stick);

call tree from Ada code

(da) room.Sticks [R](op) room.get_stick

END get_stick

END room

windows Design name 28 - page Company name

STOOD 4.3 (c) TNI date issue

CLASS windows IS

 PASSIVE

pragmas
PRAGMA init_bloc
(init_op => initialize)

DESCRIPTION

PROBLEM

Statement of the Problem (text)
Manager for simple, nonoverlapping windows for alpha-numeric console.

Referenced Documents (text)
This application is the HOOD version of "Dining Philosophers - Ada95 edition" from Michael B. Feldman, The GeorgGeorg
George Washington University, July 1995.
HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD toolset.

Analysis of Requirements

Structural Requirements (text)
SR4: This modules implements an abstract simple window manager. (cf.SR4/Display_windows:)

Functionnal Requirements (text)
FR4: Open and initialize a window. (cf.FR4/Open&initialize_window:)
FR5: Write messages at a specified location on the window. (cf.FR5/Write_messages:)

Behavioural Requirements (text)
Windows are passive unshared objects. There is no particular behaviour requirements.

Local Environment

Parent General Description (text)
Please refer to parent module description.

SOLUTION

General Strategy (text)
Window module is designed as a passive HOOD4 class.
It describes a window data structure and all relevant functional services.

Code generator will produce a package containing a tagged type.

Structural Description

Identification of Data Structures (text)
SR4: type Window is a class which attributes describe first, last and current positions of the cursor on the screen.

Functional Description

Identification of Operations (text)
Following operations are primitive operations of type Window:
FR4:
- Initialize: package init block is used to clear the screen.
- Open: instanciates a new window and initialize its attributes with passed values.
- Title: writes a title and optionnaly a separation line.
- Borders: draws top, right, left and bottom lines.
FR5:

windows Design name 29 - page Company name

STOOD 4.3 (c) TNI date issue

- MoveCursor: sets current cursor position.
- Put#1: writes a character at current cursor position.
- Put#2: writes a string at current cursor location.
- New_Line: puts current cursor position at the beginning of next line.
- EraseToEndOfLine: erases from current location to the end of line.

Grouping Operations (text)
None

Behavioural Description

Identification of Local Behaviour (text)
None

Justification of Design Decisions (text)
A few changes in initial source code were done to best fit HOOD4 design rules:
- Window was declared as a HOOD4 class, so code generator produces a tagged type by default.
- Name of the parameter of type Window in all primitive operation declarations was set to "me".

PROVIDED_INTERFACE

TYPES

Window

type description (text)
First : coordinates of upper left corner;
Last : coordinates of lower right corner;
Current : current cursor position.

class inheritance (hood)
INHERITANCE NONE

type attributes (hood)
ATTRIBUTES First : screen.Position, Last : screen.Position, CurreCurre
Current : screen.Position

type enumeration (hood)
ENUMERATION NONE

type pre-declaration (ada)
type Window is private;

OPERATIONS

open

operation spec. description (text)
Pre: UpperLeft, Weight, and Width are defined
Post: returns a Window with the given upper-left corner, height, and width

operation declaration (hood)
open(
UpperLeft : in Screen.Position;
Height : in Screen.Height;
Width : in Screen.Width

) return Window;

windows Design name 30 - page Company name

STOOD 4.3 (c) TNI date issue

real time attributes (hood)
WCET

title

operation spec. description (text)
Pre: me, Name, and Under are defined
Post: Name is displayed at the top of the window me, underlined with the character Under

operation declaration (hood)
title(
me : in out Window;
Name : in String;
Under : in Character

);

real time attributes (hood)
WCET

borders

operation spec. description (text)
Pre: All parameters are defined
Post: Draw border around current writable area in window with characters specified.

Call this BEFORE Title.

operation declaration (hood)
borders(
me : in out Window;
Corner : in Character;
Down : in Character;
Across : in Character

);

real time attributes (hood)
WCET

movecursor

operation spec. description (text)
Pre: me, and P are defined, and P lies within the area of me
Post: Cursor is moved to the specified position.

Coordinates are relative to the upper left corner of me, which is (1,1)

operation declaration (hood)
movecursor(me : in out Window; P : in Screen.Position);

real time attributes (hood)
WCET

put#1

operation spec. description (text)
Pre: me, and Ch are defined.
Post: Ch is displayed in the window at the next available position.

If end of column, go to the next row.
If end of window, go to the top of the window.

windows Design name 31 - page Company name

STOOD 4.3 (c) TNI date issue

operation declaration (hood)
put#1(me : in out Window; Ch : in Character);

real time attributes (hood)
WCET

put#2

operation spec. description (text)
Pre: me, and S are defined.
Post: Ch is displayed in the window, "line-wrapped" if necessary

operation declaration (hood)
put#2(me : in out Window; S : in String);

real time attributes (hood)
WCET

new_line

operation spec. description (text)
Pre: me is defined.
Post: Cursor moves to beginning of next line of me;

line is not blanked until next character is written

operation declaration (hood)
new_line(me : in out Window);

real time attributes (hood)
WCET

windows Design name 32 - page Company name

STOOD 4.3 (c) TNI date issue

REQUIRED_INTERFACE
OBJECT screen;
TYPES
Height; Position; Width;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
MoveCursor; ClearScreen;

EXCEPTIONS
NONE

OBJECT standard;
TYPES
Character; String;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

OBJECT text_io;
TYPES
NONE

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
Put; New_Line;

EXCEPTIONS
NONE

windows Design name 33 - page Company name

STOOD 4.3 (c) TNI date issue

INTERNALS

OPERATIONS

erasetoendofline

operation spec. description (text)
Used to erase partially the screen.

operation declaration (hood)
erasetoendofline(me : in out Window);

real time attributes (hood)
WCET

initialize

operation spec. description (text)
This HOOD operation will not be generated as an Ada procedure, but as package initialization block.
This result is obtained by setting pragma "init_bloc(initialize)" when generating Ada code.

operation declaration (hood)
initialize;

real time attributes (hood)
WCET

OPERATION_CONTROL_STRUCTURES

OPERATION open IS

operation body description (text)
Instanciates a new Window named "Result"
Sets Result attributes (Current, First and Last)
Returns Result.

operation code (ada)
 Result : Window;
begin
 Result.Current := UpperLeft;
 Result.First := UpperLeft;
 Result.Last := (Row => UpperLeft.Row + Height - 1,

 Column => UpperLeft.Column + Width - 1);
 return Result;

END open

OPERATION title IS

operation body description (text)
Sets cursor at the beginning of first line.
Writes title string
If "Under" is blank then continue
else draw a separation line
Reduces writable area as required.

windows Design name 34 - page Company name

STOOD 4.3 (c) TNI date issue

used operations
windows.put
windows.new_line

operation code (ada)
begin

 -- Put name on top line
 me.Current := me.First;
 Put(me, Name);
 New_Line(me);

 -- Underline name if desired, and reduce the writable area
 -- of the window by one line
 if Under = ' ' then
 -- no underlining
 me.First.Row := me.First.Row + 1;
 else
 -- go across the row, underlining
 for Count in me.First.Column..me.Last.Column loop
 Put(me, Under);
 end loop;
 New_Line(me);
 -- reduce writable area
 me.First.Row := me.First.Row + 2;
 end if;

call tree from Ada code

(op) windows.put#2

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.erasetoendofline(op) windows.new_line

(op) windows.title

END title

OPERATION borders IS

operation body description (text)
Draws top line border.
Draws the two side lines.
Draws the bottom line of the border.
Make the Window smaller by one character on each side.

used operations
screen.MoveCursor
text_io.Put

operation code (ada)
begin

 -- Put top line of border
 Screen.MoveCursor(me.First);
 Text_IO.Put(Corner);
 for Count in me.First.Column+1 .. me.Last.Column-1 loop
 Text_IO.Put(Across);
 end loop;
 Text_IO.Put(Corner);

 -- Put the two side lines
 for Count in me.First.Row+1 .. me.Last.Row-1 loop
 Screen.MoveCursor((Row => Count,Column => me.First.Column));
 Text_IO.Put(Down);
 Screen.MoveCursor((Row => Count,Column => me.Last.Column));

windows Design name 35 - page Company name

STOOD 4.3 (c) TNI date issue

 Text_IO.Put(Down);
 end loop;

 -- Put the bottom line of the border
 Screen.MoveCursor((Row => me.Last.Row,Column => me.First.Columnme.First.Column
me.First.Column));
 Text_IO.Put(corner);
 for Count in me.First.Column+1 .. me.Last.Column-1 loop
 Text_IO.Put (Across);
 end loop;
 Text_IO.Put(Corner);

 -- Make the Window smaller by one character on each side
 me.First := (Row => me.First.Row+1,Column => me.First.Column+1)me.First.Column+1)
me.First.Column+1);
 me.Last := (Row => me.Last.Row-1,Column => me.Last.Column-1);
 me.Current := me.First;

call tree from Ada code

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.borders

END borders

OPERATION movecursor IS

operation body description (text)
Cursor position passed as parameter is relative to window boundaries.

operation code (ada)
-- Relative to writable Window boundaries, of course
begin
 me.Current.Row := me.First.Row + P.Row;
 me.Current.Column := me.First.Column + P.Column;

END movecursor

OPERATION put#1 IS

operation body description (text)
If at end of current line then move to next line.
If at beginning of current line then erase the entire line.
Writes given character.

used operations
windows.erasetoendofline
screen.MoveCursor
text_io.Put

operation code (ada)
begin

 -- If at end of current line, move to next line
 if me.Current.Column > me.Last.Column then
 if me.Current.Row = me.Last.Row then
 me.Current.Row := me.First.Row;
 else
 me.Current.Row := me.Current.Row + 1;
 end if;
 me.Current.Column := me.First.Column;
 end if;

 -- If at First char, erase line

windows Design name 36 - page Company name

STOOD 4.3 (c) TNI date issue

 if me.Current.Column = me.First.Column then
 EraseToEndOfLine(me);
 end if;

 Screen.MoveCursor(To => me.Current);

 -- here is where we actually write the character!
 Text_IO.Put(Ch);
 me.Current.Column := me.Current.Column + 1;

call tree from Ada code

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.erasetoendofline

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.put#1

END put#1

OPERATION put#2 IS

operation body description (text)
Uses put#1 to write each character of the string.

operation code (ada)
begin
 for Count in S'Range loop
 Put(me, S (Count));
 end loop;

END put#2

OPERATION new_line IS

operation body description (text)
If cursor is at beginning of a line then first erase this line.
If cursor is on last line then put it on first line.
Else put it on next line.

used operations
windows.erasetoendofline

operation code (ada)
begin
 if me.Current.Column = 1 then
 EraseToEndOfLine(me);
 end if;
 if me.Current.Row = me.Last.Row then
 me.Current.Row := me.First.Row;
 else
 me.Current.Row := me.Current.Row + 1;
 end if;
 me.Current.Column := me.First.Column;

call tree from Ada code

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.erasetoendofline(op) windows.new_line

END new_line

windows Design name 37 - page Company name

STOOD 4.3 (c) TNI date issue

OPERATION erasetoendofline IS

operation body description (text)
Puts blank characters from current cursor position to the end of current line.
Current cursor position remains unchanged.

used operations
screen.MoveCursor
text_io.Put

operation code (ada)
begin
 Screen.MoveCursor (me.Current);
 for Count in me.Current.Column .. me.Last.Column loop
 Text_IO.Put (' ');
 end loop;
 Screen.MoveCursor (me.Current);

call tree from Ada code

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.erasetoendofline

END erasetoendofline

OPERATION initialize IS

operation body description (text)
Clears the screen.

used operations
text_io.New_Line
screen.ClearScreen

operation code (ada)
begin
 Text_IO.New_Line;
 Screen.ClearScreen;
 Text_IO.New_Line;

call tree from Ada code

(op) text_io.New_Line

(op) screen.ClearScreen

(op) windows.initialize

END initialize

END windows

phil Design name 38 - page Company name

STOOD 4.3 (c) TNI date issue

CLASS phil IS

 ACTIVE

pragmas
PRAGMA discriminant
(type_name => Philosopher,
 attribute_name => --|My_ID|--)

DESCRIPTION

PROBLEM

Statement of the Problem (text)
Phil is a module describing an abstract Philosopher.
Philosophers behave autonomously as soon as they are allowed to start eating.
To eat, they need to grab two chopsticks which are shared with their two neighbours.

Referenced Documents (text)
This application is the HOOD version of "Dining Philosophers - Ada95 edition" from Michael B. Feldman, The GeorgGeorg
George Washington University, July 1995.
HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD toolset.

Analysis of Requirements

Structural Requirements (text)
SR2: type Philosopher provides an abstract description of their individual behaviour. (cf.SR2/Philosophers:)

Functionnal Requirements (text)
FR6: Let Philosophers start eating. (cf.FR6/Start_eating:)

Behavioural Requirements (text)
BR6: While eating, each Philosopher changes sequentially its internal state in following order: Breathing, Got_One_Got_One_
Got_One_Stick, Got_Other_Stick, Eating, Done_Eating, Thinking and Dying. Change of state is not triggered by exex
external requests, but by release of shared chopsticks and internal waitng delays. (cf.BR6/Philosopher_states:)

Local Environment

Parent General Description (text)
Please refer to parent module description.

SOLUTION

General Strategy (text)
Phil is designed as an active HOOD4 class with a single constrained operation.

Code generator will produce a package containing a task type.

Structural Description

Identification of Data Structures (text)
SR2:
- type Philosopher with a unique attribute (My_ID) which is implemented as a discriminant.
- type Philosopher_Ptr is a pointer to a Philosopher.

Functional Description

phil Design name 39 - page Company name

STOOD 4.3 (c) TNI date issue

Identification of Operations (text)
FR6: entry Start_Eating

PROVIDED_INTERFACE

TYPES

Philosopher

class inheritance (hood)
INHERITANCE NONE

type attributes (hood)
ATTRIBUTES My_ID : society.Unique_DNA_Codes

type enumeration (hood)
ENUMERATION NONE

Philosopher_Ptr

type attributes (hood)
ATTRIBUTES NONE

type enumeration (hood)
ENUMERATION NONE

type definition (ada)
type Philosopher_Ptr is access all Philosopher;

States

type attributes (hood)
ATTRIBUTES NONE

type enumeration (hood)
ENUMERATION NONE

type definition (ada)
type States is (
 Breathing, Thinking, Eating, Done_Eating,
 Got_One_Stick, Got_Other_Stick, Dying);

OPERATIONS

start_eating

operation declaration (hood)
start_eating(
me : in out Philosopher;
Who_Am_I : in Society.Unique_DNA_Codes;
Chopstick1 : in Positive;
Chopstick2 : in Positive

);

phil Design name 40 - page Company name

STOOD 4.3 (c) TNI date issue

real time attributes (hood)
WCET

OBJECT_CONTROL_STRUCTURE

constrained operations
start_eating CONSTRAINED_BY LSER;

REQUIRED_INTERFACE
OBJECT chop;
TYPES
NONE

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
pick_up; put_down;

EXCEPTIONS
NONE

OBJECT room;
TYPES
NONE

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
report_state; get_stick;

EXCEPTIONS
NONE

OBJECT society;
TYPES
Unique_DNA_Codes;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

OBJECT standard;
TYPES
Positive; Duration;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

phil Design name 41 - page Company name

STOOD 4.3 (c) TNI date issue

DATAFLOWS
reporting => room;
using => chop;

INTERNALS

TYPES

Think_Times

type attributes (hood)
ATTRIBUTES NONE

type enumeration (hood)
ENUMERATION NONE

type definition (ada)
subtype Think_Times is Positive range 1..8;

Meal_Times

type attributes (hood)
ATTRIBUTES NONE

type enumeration (hood)
ENUMERATION NONE

type definition (ada)
subtype Meal_Times is Positive range 1..10;

Life_Time

type attributes (hood)
ATTRIBUTES NONE

type enumeration (hood)
ENUMERATION NONE

type definition (ada)
subtype Life_Time is Positive range 1 .. 5;

DATA

Think_Length

data declaration (ada)
package Think_Length is new Random_Generic(
 Result_Subtype => Think_Times);

phil Design name 42 - page Company name

STOOD 4.3 (c) TNI date issue

data access from pseudo_code
(da) phil.Think_Length IS USED BY NONE

data access from Ada code
(da) phil.Think_Length IS USED BY NONE

data access from C code
(da) phil.Think_Length IS USED BY NONE

data access from C++ code
(da) phil.Think_Length IS USED BY NONE

Meal_Length

data declaration (ada)
package Meal_Length is new Random_Generic(
 Result_Subtype => Meal_Times);

data access from pseudo_code
(da) phil.Meal_Length IS USED BY NONE

data access from Ada code
(da) phil.Meal_Length IS USED BY NONE

data access from C code
(da) phil.Meal_Length IS USED BY NONE

data access from C++ code
(da) phil.Meal_Length IS USED BY NONE

OPERATION_CONTROL_STRUCTURES

OPERATION start_eating IS

used operations
room.report_state
room.get_stick
chop.pick_up
chop.put_down

operation code (pseudo)
chop.pick_up

call tree from pseudo_code

(op) chop.pick_up(op) phil.start_eating

operation code (ada)
 Meal_Time : Meal_Times;
 Think_Time : Think_Times;

begin

 Room.Report_State(Who_Am_I, Breathing);

 for Meal in Life_Time loop

 Room.Get_Stick(Chopstick1).all.Pick_Up;
 Room.Report_State(Who_Am_I,Got_One_Stick,Chopstick1);

 Room.Get_Stick(Chopstick2).all.Pick_Up;

phil Design name 43 - page Company name

STOOD 4.3 (c) TNI date issue

 Room.Report_State(Who_Am_I,Got_Other_Stick,Chopstick2);

 Meal_Time := Meal_Length.Random_Value;
 Room.Report_State(Who_Am_I,Eating,Meal_Time,Meal);

 delay Duration(Meal_Time);

 Room.Report_State(Who_Am_I,Done_Eating);

 Room.Get_Stick(Chopstick1).all.Put_Down;
 Room.Get_Stick(Chopstick2).all.Put_Down;

 Think_Time := Think_Length.Random_Value;
 Room.Report_State(Who_Am_I,Thinking,Think_Time);

 delay Duration(Think_Time);

 end loop;

 Room.Report_State(Who_Am_I,Dying);

call tree from Ada code

(da) room.T [R]

(op) calendar.Clock

(da) room.Start_Time [R]

(op) windows.put#2

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.erasetoendofline(op) windows.new_line

(op) windows.title

(da) room.Phil_Windows [R]

(da) room.Phil_Seats [R]

(da) society.Name_Register [R](op) society.get_name

(op) windows.erasetoendofline

(op) screen.MoveCursor

(op) text_io.Put

(op) windows.put#1

(op) windows.new_line

(op) room.report_state

(da) room.Sticks [R](op) room.get_stick

(op) chop.pick_up

(op) chop.put_down

(op) phil.start_eating

END start_eating

END phil

society Design name 44 - page Company name

STOOD 4.3 (c) TNI date issue

OBJECT society IS

 PASSIVE

DESCRIPTION

PROBLEM

Referenced Documents (text)
This application is the HOOD version of "Dining Philosophers - Ada95 edition" from Michael B. Feldman, The GeorgGeorg
George Washington University, July 1995.
HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD toolset.

Local Environment

Parent General Description (text)
Please refer to parent module description.

PROVIDED_INTERFACE

TYPES

Unique_DNA_Codes

type attributes (hood)
ATTRIBUTES NONE

type enumeration (hood)
ENUMERATION NONE

type definition (ada)
subtype Unique_DNA_Codes is Positive range 1..5;

OPERATIONS

get_name

operation declaration (hood)
get_name(Code : in Unique_DNA_Codes) return String;

real time attributes (hood)
WCET

society Design name 45 - page Company name

STOOD 4.3 (c) TNI date issue

REQUIRED_INTERFACE
OBJECT standard;
TYPES
String; Positive;

CONSTANTS
NONE

OPERATION_SETS
NONE

OPERATIONS
NONE

EXCEPTIONS
NONE

INTERNALS

DATA

Name_Register

data declaration (ada)
Name_Register : array(Unique_DNA_Codes) of String(1..18) :=
 ("Philosopher #1 ",
 "Philosopher #2 ",
 "Philosopher #3 ",
 "Philosopher #4 ",
 "Philosopher #5 ");

data access from pseudo_code
(da) society.Name_Register IS USED BY NONE

data access from Ada code
(da) society.Name_Register IS USED BY
(op) society.get_name [R]

data access from C code
(da) society.Name_Register IS USED BY NONE

data access from C++ code
(da) society.Name_Register IS USED BY NONE

OPERATION_CONTROL_STRUCTURES

OPERATION get_name IS

operation code (ada)
begin
 return Name_Register(Code);

call tree from Ada code

(da) society.Name_Register [R](op) society.get_name

END get_name

END society

chop Design name 46 - page Company name

STOOD 4.3 (c) TNI date issue

CLASS chop IS

 PASSIVE

DESCRIPTION

PROBLEM

Referenced Documents (text)
This application is the HOOD version of "Dining Philosophers - Ada95 edition" from Michael B. Feldman, The GeorgGeorg
George Washington University, July 1995.
HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD toolset.

Local Environment

Parent General Description (text)
Please refer to parent module description.

PROVIDED_INTERFACE

TYPES

Stick

class inheritance (hood)
INHERITANCE NONE

type attributes (hood)
ATTRIBUTES In_Use : Boolean := --|false|--

type enumeration (hood)
ENUMERATION NONE

Stick_Ptr

type attributes (hood)
ATTRIBUTES NONE

type enumeration (hood)
ENUMERATION NONE

type definition (ada)
type Stick_Ptr is access all Stick;

OPERATIONS

pick_up

operation declaration (hood)
pick_up(me : in out stick);

chop Design name 47 - page Company name

STOOD 4.3 (c) TNI date issue

real time attributes (hood)
WCET

put_down

operation declaration (hood)
put_down(me : in out stick);

real time attributes (hood)
WCET

OBJECT_CONTROL_STRUCTURE

constrained operations
pick_up CONSTRAINED_BY RWER STATE;
put_down CONSTRAINED_BY RWER STATE;

INTERNALS

OBJECT_CONTROL_STRUCTURE

state transition diagram

Not_In_Use

In_Use

pick_up put_down

put_down

Not_In_Use

entering transitions
put_down, put_down

exiting transitions
pick_up, put_down

In_Use

entering transitions
pick_up

exiting transitions
put_down

pick_up

chop Design name 48 - page Company name

STOOD 4.3 (c) TNI date issue

transition event
pick_up

transition from
Not_In_Use

transition to
In_Use

trans condition (ada)
not In_Use

put_down

transition event
put_down

transition from
In_Use

transition to
Not_In_Use

put_down

transition event
put_down

transition from
In_Use

transition to
Not_In_Use

OPERATION_CONTROL_STRUCTURES

OPERATION pick_up IS

operation code (ada)
begin
 In_Use := True;

END pick_up

OPERATION put_down IS

operation code (ada)
begin
 In_Use := False;

END put_down

END chop

CONTENTS Design name Company name

STOOD 4.3 (c) TNI date issue

SYSTEM_CONFIGURATION IS . 1
Design Tree . 1
Inheritance Tree . 1
Structural . 2
Functional . 2
List of Requirements . 3

OBJECT philosophers IS . 4
DESCRIPTION . 4
PROVIDED_INTERFACE . 9
OBJECT_CONTROL_STRUCTURE . 9
REQUIRED_INTERFACE . 9
INTERNALS . 10
END philosophers . 10

OBJECT room IS . 11
DESCRIPTION . 11
PROVIDED_INTERFACE . 13
OBJECT_CONTROL_STRUCTURE . 14
REQUIRED_INTERFACE . 14
DATAFLOWS . 15
INTERNALS . 15
END room . 27

CLASS windows IS . 28
DESCRIPTION . 28
PROVIDED_INTERFACE . 29
REQUIRED_INTERFACE . 32
INTERNALS . 33
END windows . 37

CLASS phil IS . 38
DESCRIPTION . 38
PROVIDED_INTERFACE . 39
OBJECT_CONTROL_STRUCTURE . 40
REQUIRED_INTERFACE . 40
DATAFLOWS . 41
INTERNALS . 41
END phil . 43

OBJECT society IS . 44
DESCRIPTION . 44
PROVIDED_INTERFACE . 44
REQUIRED_INTERFACE . 45
INTERNALS . 45
END society . 45

CLASS chop IS . 46
DESCRIPTION . 46
PROVIDED_INTERFACE . 46
OBJECT_CONTROL_STRUCTURE . 47
INTERNALS . 47
END chop . 48

