Stood * Tni

AADL Import/Export
User Manual

Technology Innovation

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 1

Pierre Dissaux

page 2 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

Contents

1. AADL mapping 7
1.1. AADL components 7
1.2. AADL features 11
1.3. AADL connections 12
1.4. AADL properties 13
1.5. AADL modes 14
2. AADL export 15
2.1. Set the default language 15
2.2. Load adesign 17
2.3. Create anew design 18
2.3.1. Components and packages 18
2.3.1.1. Systems 18
2.3.1.2. Packages 19
2.3.1.3. Processes 21
2.3.1.4. Threads 23
2.3.1.5. Thread groups 27
2.3.1.6. Data 29
2.3.1.7. Subprograms as components 36
2.3.1.8. Execution platform components 38
2.3.2. Features 39
2.3.2.1. Ports 39
2.3.2.2. Port groups 43
2.3.2.3. Subprograms as features 43
2.3.2.4. Subprogram parameters 45
2.3.2.5. Subcomponent access 46

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 3

2.3.3. Connections 48

2.3.3.1. Between sibling components 48
2.3.3.2. Up and down the containment hierarchy 51
2.3.4. Operational modes 53
2.3.5. Properties 55
2.4. Set generation options 57
2.4.1. Pragma 0s 58
2.4.2. Pragmamain 59
2.4.3. Pragma compact 60
2.4.4. Pragmamore_packages 61
2.4.5. Pragma renames 64
2.4.6. Pragma behavior 66
2.4.7. Pragmareverse 68
2.4.8. Pragmatype_name 69
2.4.9. Pragmaimplementation_name 70
2.5. Generate and view AADL code 71
3. AADL import 73

page 4 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 5

The Architecture Analysis and Design L anguage (AADL) standards document
was prepared by the SAE AS2C Architecture Description Language
Subcommittee, Embedded Computing Systems Committee, Aerospace Avionics
Systems Division. The AADL standard is based on MetaH, an architecture
description language developed a Honeywell Laboratories under the
sponsorship of the US Defense Advanced Research Projects Agency (DARPA)
and US Army Aviation and Missile Command (AMCOM). Release 1.0 of the
AADL standard (SAE AS5506) has been issued in November 2004.

The AADL is a language used to describe the software and hardware
Components of a system and the interfaces between those Components. The
language can describe functional interfaces to Components, such as data inputs
and outputs, and non-functional aspects of Components, such as timing. The
language can describe how Components are combined, such as how data inputs
and outputs are connected or how software Components are allocated to
hardware Components. More detailed information about this language may be
found at: wwv. aadl . i nf 0.

Stood is a software design tool that is used for the same kinds of mission
critical systems as those for which the AADL has been developed. This manual
describes the import and export features that have been included into Stood, in
order to let software designers benefit from the AADL. Some of the most
important advantages of Stood is that it offers a very good support of the
modeling process, and brings a large set of development features that have
already been in use on many large scale industrial projects.

With Stood it is thus possible to import specifications written in AADL to set
up a preliminary software architecture, or to generate standard AADL
descriptors of existing software Componentsfor future reuse.

page 6 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

1. AADL mapping

Unlike for some other toolsets that are fully dedicated to the AADL, the
support of the language in Stood is based on a point to point mapping between
the Stood internal meta-model, which is aimplementation of the HOOD, HRT-
HOOD and UML 2.0 standards, and the closest definitions in the AADL
standard. Please, refer to the corresponding AADL, HOOD and UML 2.0
standards definition for a more complete and precise description of these
concepts. The support of the AADL into Stood thus mainly consists in a set of
transformation rules, that are packaged inside external plugins for better
flexibility. This chapter presents this mapping for AADL Packages,
Components, Features, Connections, Properties, and other concepts.
Variants in this mapping may be defined to comply with specific requirements.
For instance the default transformation rules that have been defined for the
import and export features may differ in afew points to best fit the actual need
of each use case.

1.1. AADL components

A HOOD System_Configuration represents a software project. It refers to
one or several cooperative programs (Design), libraries and software interface
for hardware (Environment), and generic components (Generic). Each Design
becomes an Environment within the scope of another Design of the same
System_Configuration. This is the logical view of the project. In addition, it
may contain one ore several Virtual_Nodes describing a distributed architecture
of processors and an allocation table for the elements of thelogical view. Thisis
the physical view of the project which is only needed for distributed systems.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 7

The System_Configuration is mapped to an AADL System instance, when the
main Design aims to the production of an executable program, and thus
represents a Process. Environments may represent other collaborative
Processes within the same System, or Packages if they only am to the
production of libraries of types or classes. Further investigations will be
performed to extend this mapping in order to support some other kinds of
Environments as Devices, Generics as Packages and Virtual _Nodes as
Processors.

A HOOD Design istheroot of a hierarchy of Modules. Each Moduleis awell
identified subset of the Design that is built in an iterative way, following a top-
down decomposition process. This process must comply with the information
hiding, low-coupling and high consistency rules promoted by the HOOD
methodol ogy.

The most natural mapping for a HOOD Module is an AADL software
Component, athough it will represent either a Component Type and
Implementation only, if defined within a Package, or a Component Type,
Implementation and a Subcomponent, if defined within a Process.

A HOOD Module may be Passive or Active. If it is Active, it containsits own
thread of control. Two specialized kinds of Active Modules have been defined
by HRT-HOOD to support Hard Real-Time architectures: Cyclic Objects to
represent periodic activity, and Sporadic Objects that are triggered by an
applicative event. A specialized kind of Passive Module has been defined to
encapsul ate shared data and their appropriate access procedures, they are called
Protected Objects. There are other kinds of Modules like Classes, that
represent object oriented data structures associated with their member
functions, Op_Controls, that represent purely functional entities, and
Instances Of generic, that represent parameterized entities.

page 8 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

The table below summarizes the mapping between HOOD Module kinds and
AADL Component categories:

Subprogram Op_Control

In HOOD, each Module (including the Design), has an interface and a body.
The interface consists of the Provided Interface that lists the declaration of
the software elements that are implemented by the M odule and made visible to
be used by other Modules, and the Required Interface that lists the
references to all the remote software elements that are required to implement the
Module. The body is called the Internals of the Module and contains either
child Modules (for aNon_Terminal Module) or alist of declaration of private
software elements and al the implementation (for a Terminal Module).
Mapping with the corresponding AADL concepts is shown in the table below:

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 9

AADL sroob
Component Type Modulelnterfaces
\\\\\\\\ Features ~ Provided Interface
~_Required Subcomponents Required Interface
Component Implementation ModuleInternals
\\\\\\\\ Subcomponents ~ ChildModules
S Cals OPeration Control Structure
Extends CI ass I nheritance

Unlike the AADL, HOOD only distinguishes between Modules type and
Modules instances in two particular cases only, the general case being that a
Module is handled as an Object, that is, the unique instance of an anonymous
type. The first particular case is when the M odule type is described by a Class
(like in UML), but then, instances of this Class (which are in effect only
instances of the main data Type provided by the Class) becomes Data,
Constants, etc... embedded somewhere inside another Module. The other
particular case is when the Module type is described by a Generic, then,
instances of this Generic (which are in effect only instances of the formal
parameters) become other Modules called Instance_Of. HOOD also supports
Generic Classes (similar to C++ templates) that need to be instanciated twice.
The other extension mecanism offered by HOOD is the Class I nheritance.

Practically, when a HOOD Module is defined as a child of a Passive parent,
then it will be considered as being abstract, and it will be trandated into a
Component Type and Implementation. On the contrary, if it is a child of an
Active parent, it will be translated into a Subcomponent and the corresponding
Component Type and Implementation. Subcomponents which Type is
defined within a remote Package should be modeled in HOOD by an
Instance Of a Generic Module. However this mapping is not implemented
yet. Component Type Extension is currently available for Data Components
only, and represented in HOOD by the Class | nheritance relationship.

page 10 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

1.2. AADL features

A HOOD Module may contain references and declarations to, and/or
implementation of, software elements. These elements are: Operations,
Exceptions, (data) Types and Constants in a Provided Interface, and
Operations, (data) Types, Constants and Data in the Internals. Operations
declaration may specify Parameters and Types declaration may specify
Attributes. Constants, Data, Parameters and Attributes are instances of a
data Type. Operations may raise and handle Exceptions. As Provided Data
are not allowed in HOOD, data flows can only be propagated between two
M odules along client/server functional calls.

Data Access Required or Used Object

By default, the execution request for an Operation is said to be unconstrained.
However, it is possible to specify one or several Operation Constraints
(trigger events) to describe more precisely the interaction between aclient and a
server. Protocol Constraints are used to specify the synchronization protocol
between two concurrent threads of execution. These constraints are: ASER
(asynchronous), LSER (synchronous, acknowledge), HSER (synchronous,
wait-reply). The additional constraint TO specifies a time-out for ASER and
LSER, and hardware interrupts are identified by the additionnal constraint
BY IT attached to an ASER constraint. State Constraints specify the
receptivity of a service regarding the current State of the server and
Concurrency Constraints can be used to manage mutual exclusion.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 11

1.3. AADL connections

At architectura level, the interactions between HOOD Modules are described
by Use relationships on both functional and structural views. A functional Use
relationship defines a client/server interaction between Operations of the two
Modules. They are the support for control flows, DataFlows (related to the
Parameters of the called Operations) and Exception_Flows (related to the
Exceptions that may be raised by the called Operations). A structural
relationship defines a Type dependency (instanciation, aggregation and
inheritance for Classes) between the two Modules. They are the support for
the definition of Attributes (for any structured Type) and super-Classes (for
Classes).

In HOOD, Non Terminal Modules are empty shells. That means that any
element (Type, Constant, Operation or Exception) declared in the
Provided_Interface of a Non Terminal Module must be Implemented_By a

element of the same kind in the Provided Interface of one of the child
Modules.

AADL STOOD

between sibling Components Op_Use relationship

Component to Subcomponent Implemented By relationship

dot notation for DataTypes Type Use relationship

page 12 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

1.4. AADL properties

HOOD offers a standard information structure for each Module. This structure
is called the ODS (Object Description Skeleton) and provides low level details
about the M odule and its elements. The ODS contains:

 Textual sectionsto justify the design choices and the
requirements traceability

 Real-Time attributes (period, priority, deadline, worst case
execution time, etc...)

» Thelist of required remote elements (Required_I nterface)

» Textual comment for each Operation, Type, €tc...

* Source code for the declaration of each Type, Constant, or Data
element

» Source code for the OPCS (procedural code of an Operation) and
the OBCS (behavioral code of a Module)

* efc...

Many of these elements can represent AADL Properties. Currently, just a few
of them are supported by Stood:

AADL srooo
Source Text ~ namingrules
Source Language pragmaTarget_Language
Source Name ~ namingrules
Dispatch_Protocol kind of Module (cyclic, ...)
Peiod ~ H RT Attribute: Period
Compute Deadline ~ H RT Attribute: WCET
Deadline ~ H RT Attribute: Deadline
Compute_Entrypoint ‘naming rules

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 13

1.5. AADL modes

The Internals of a Terminal Module contain the procedural code associated
to each Provided or Internal Operation, within a structure called the OPCS
(OPeration Control Structure). If there is at least one Operation that has a
Protocol or State Constraint, the Internals of a Terminal Module will also
contain the behavioral code associated to the corresponding thread and/or states-
transitions model, within another structure called OBCS (OBject Control
Structure).

Internal Data may be shared by all the elements contained by the I nternals of
the Module. They can be used as State variables for the states-transitions
model implemented in the OBCS of a Terminal Module. The only states that
need to be specified in a HOOD states-transitions model are those defining
areas of receptivity for the provided Operations. The execution request for a
provided Operation becomes an event that triggers atransition (in the OBCYS),
before executing the appropriate code (in the OPCS). In HOOD, a states-
transitions model can also be used to specify the execution modes for a whole
Design. In that case, al the real-time attributes must have a known value for
each mode.

AADL STOOD
Mode ~ StaeaRootlevel
Mode Mode transition ‘Transition at Root level

page 14 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2. AADL export

The process to export an AADL specification from an existing HOOD Design
is similar to a target language code generation. This process consists in the
following steps:

» Set AADL asthe default language

* Load an existing Design, Or Create a new one.

» Open the AADL extractor window.

» Set AADL code generation options.

« Launch the generation, and view the generated code.

2.1. Set the default language

Stood is a muti-language modeling tool. It is thus possible to perform detailed
design and coding activities for several target languages concurrently. Dedicated
coding sections are available for that purpose for each Component design
framework (ODS). In the case of the AADL, there are no dedicated coding
sections, but pseudo code sections can be used if required.

However, there is generally one main target and it is possible to configure the
tool in such a way that the corresponding functions are selected by default. For
instance, open the right code generator while selecting the code tab.

There are two ways to select the default target language. First way is at a tool
configuration level, by editing the initialization file that is loaded each time
Stood is launched. The following lines show the properties that must be set for
Windows (bi n. w32\ st ood. i ni) and Unix (bi n. */ . st oodr c).

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 15

[General]
Def aul t Language=aadl|

Gener al . Def aul t Language: aadl
The second way consists in changing the main target language for the current

Design. This can be done from the Stood menus, as shown below. This option
will then be stored and saved at the same time as the Design.

£1] stood 5.0 - new_system

File Edit Design Component Feature Tools Help

Mew design 4
(design)nev New design from v R equire
& (desi ==
Z L ne -

& (desi¢ Unlock design =

L ne n
Rename design...
Change design into 4
Update design from 4
Change design language * + aadl
Compare design... ada
Show design location o
Save design cpp
Save design as 4 pseudo

e PR R .

page 16 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.2.L.oad adesign

It is aways necessary to open a System before loading a Design. A given
Design may however be loaded from several Systems. Use the File menu to
create a new System or open an existing one. The list of Designs that are
available for the System is then updated and it becomes possible to load one or
several of them.

i stood 5.0
Fie Edit Design Component Fes

Mew system...
Open system...

When just selected (single mouse click on the Design name), the Design is
loaded but no change can be made (read-only mode). To enable changes, the
Design must be locked by yourself (read-write mode). This can be done either
by a double mouse click on the Design name, or by using the Design/lock
Design menu. In that case, a green locker can be seen at the left of the Design
name.

L1 Stood 5.0 - generateAADL
File Edit Design Component Featu

(design) AcgSystem

a[design] AcgSystem
(design) graphLib

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 17

2.3. Create a new design

This section explains how to create most of the AADL constructs from the
Stood graphical user interface.

2.3.1. Components and packages
2.3.1.1. Systems

Any modeling activity must be done within a System. Just after having
launched Stood or closed the currently opened System, a new one can be
created from the File menu.

£i] Stood 5.0

Fie Edit Design Component
Mew system... 1
Open system... |Z

There is no direct AADL code generation for a System. The corresponding
AADL System will be generated on top of a Process while generating code for a
Design.

page 18 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.1.2. Packages

A new Design will be trandated into a Package if it is Passive and if no
pragma main has been defined before generating the code. A Package
represents a library of reusable Components. Unlike within a Process, these
Components are not instanciated.

£i) Stood 5.0 - new_system

Fie Edii Design Component Feature Tools Help

Mew design » design... i
Designs Mew design from v generic... !

virtual node...
If no Component has been defined inside the Package, then a dummy Data
Component Type will be generated to comply with the AADL syntax:

PACKACGE new_package
PUBLI C

DATA voi d
END voi d;

END new _package;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 19

In addition, if Passive Objects are created inside this Design, and are not
empty, they will be trandated into AADL sub Packages.

(design) new_package Requirements Graphic Design lDelaiIed Desigr
= & (design} new_package #| (" Hgod e wq T
new_package | & Uml & d8dH
new_subpackage ¢
void = ««Inferfacess
riew_package

<« Operatiores q

< Typasss : new_subpackage

clonstanteo

From the Stood model shown above, the corresponding AADL code will be
generated as follow if the pragma compact has been set:

PACKACGE new _package
PUBLI C

DATA voi d
END voi d;

END new_package;

PACKACGE new_package: : new_subpackage
PUBLI C

DATA voi d
END voi d;

END new _package: : new_subpackage;

page 20 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.1.3. Processes

A new Design will be trandlated into a Processif it has been set to Active or if
apragma main has been defined for it.

&) stood 5.0 - new_system

File Edit Design Component Feature Tools Help

New design » design...
Designs New design from ¥ generic... [
— (desit virtual node...

r =

To change the Passive/Active attribute of a Component, use the
Component/Change component into menu:

£i) Stood 5.0 - new_system
Fie Edit Design Component Feature Tools Help
New component v
(design) new_proces Import component... quirerments Graphic Desi
(design) new_ p Hood %7
Igﬁudemgn new_| Uml s
new pl’OCES
Rename component... < Systems
Change component into b v passive
Edit component ¥ active

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 21

The AADL code that is generated for an empty Processis as follow:

SYSTEM new_system
END new_syst em

SYSTEM | MPLEMENTATI ON new_syst em ot her s
SUBCOMPONENTS

new_process : PROCESS new process;
END new system ot hers;

PROCESS new process
END new_pr ocess;

If apragma main has been defined, where the event parameter must refer to an
existing in event port of the Process,

PRAGVA mai n
(event => --|start|--)

then the generated AADL code is modified as follow:

SYSTEM new_system
FEATURES

start : I N EVENT PORT;
END new_syst em

SYSTEM | MPLEMENTATI ON new_syst em ot her s
SUBCOVPONENTS

new_process : PROCESS new process;
CONNECTI ONS

EVENT PORT start -> new_process.start;
END new system ot hers;

page 22 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.1.4. Threads

An Active Object will be trandated into a Thread Component Type and
I mplementation, and a Subcomponent if it islocated within a Process. It will
be trandated into a Component Type and | mplementation only if it is created
within a Package.

To create a new Thread, use the Component/New component menu and select
either object (for an aperiodic Thread), cyclic object (for aperiodic Thread) or
sporadic object (for asporadic Thread). If the container is Active, then the new
Object will be created Active by default, else it is aways possible to let it
become Active, thanks to the Change component into menu.

£i) Stood 5.0 - new_system

Fie Edit Design Component Feature Tools Help

New component » object]
(design} new_process Import component... instance of generic &l
(design) new p L
Igﬁldemgn new class E
new pfOCES

protected object
Rename component... cyclic object
Change component into 4 sporadic object

A i [|

The following diagram can then be displayed in the editing area. The HOOD
view of the graphical architecture is shown here because it offers more details,
but the corresponding UML representation can be obtained at any time just by
switching the HOOD/UML radio button.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 23

(design) new_process Fiequirements Graphic Design]DetaiIE

(design) new_package ® Hood = = =

gﬁ(design}new_pl'ocess 2| ™ Uml =
E- new_process -4
new_thread -

I A | PEW_procgss

The generated AADL code for this architecture will be:

SYSTEM new_system
END new_system

SYSTEM | MPLEMENTATI ON new_syst em ot her s
SUBCOMPONENTS

new_process : PROCESS new process;
END new _system ot hers;

PROCESS new process
END new_pr ocess;

PROCESS | MPLEMENTATI ON new_pr ocess. ot hers
SUBCOMPONENTS

new thread : THREAD new_t hread,;
END new process. ot hers;

THREAD new_t hr ead
END new_t hr ead,;

However, it is possible to get a more precise AADL code, using the predefined
HOOD patterns:

page 24 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

If aHSER or LSER Constrained Operation is defined in the interface of an
Active Terminal Object, then a Server Subprogram will be created for the
corresponding AADL Thread, and the Property Di spat ch_Pr ot ocol =>
aper i odi ¢ will be set.

THREAD new _t hr ead
FEATURES
new_event : SERVER SUBPROGRAM new_event
{ Conpute Entrypoint => new event; };
PROPERTI ES
Di spatch_Protocol => aperi odic;
END new t hr ead,;

If an ASER Constrained Operation is defined in the interface of an Active
Terminal Object, then an Event Port will be created for the corresponding
AADL Thread, and the Property Di spat ch_Prot ocol => sporadic
will be set.

AZER

THREAD new_t hr ead
FEATURES

new _event : | N EVENT PORT,;
PROPERTI ES

Di spatch_Protocol => sporadic;
END new_t hr ead;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 25

If a Cyclic Object is created, then an Internal Operation caled t hr ead is
automatically defined, and theProperty Di spat ch_Prot ocol => cyclic
will be set for the corresponding AADL Thread.

THREAD new_t hr ead
PROPERTI ES
Di spatch_Protocol => peri odic;
Comput e_Entrypoi nt => thread;
END new t hr ead,;

If a Sporadic Object is created, then an Internal Operation called t hr ead
and aProvided ASER Constrained Operation called st art are automatically
defined, and the Property Di spat ch_Pr ot ocol => spor adi ¢ will be set
for the corresponding AADL Thread.

THREAD new_t hr ead
FEATURES
start : I N EVENT PORT,;
PROPERTI ES
Di spatch_Protocol => sporadi c;
Comput e_Entrypoi nt => thread;
END new_t hr ead,;

page 26 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.1.5. Thread groups

Thread Groups can be used to introduce intermediate levels of hierarchy in the
architecture between a Process and the executing Threads. As it has been
shown, a Process is mapped to a Root Object in the Stood Component
hierarchy, whereas Threads are mapped to Terminal Active, Cyclic or
Sporadic Objects. If Non Terminal Active Objects are defined, then they
will be tranglated into Thread Groupsinthe AADL generated code.

A Thread Group must represent a logical subset of the real time software
architecture. In compliancy with the HOOD modeling rules, a Non Terminal
Object must encompass a set of subcomponents which are highly coupled,
whereas external dependencies are minimized. For instance, aThread Goup can
be created to isolate a set of Threads communicating with a same Protected

Object.
(design) new_process Requirements Graphic Design lDetaiIed Design | Checkess | Cods | D
{design) new_package % Hood == = = = e
gﬁ(design} new_process = Ul & fﬁ ﬁ =
=R new_process 3
B new_thread_group =g a
new_data > A | new_thread_group
- ASER start 1
E new_threadl =g fy SCTA
new_thread2 =T

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 27

The corresponding generated AADL code will be as follow:

PROCESS new process
FEATURES

start : I N EVENT PORT;
END new_pr ocess;

PROCESS | MPLEMENTATI ON new_pr ocess. ot hers
SUBCOVPONENTS

new t hread _group : THREAD GROUP new_t hread_gr oup;
CONNECTI ONS

EVENT PORT start -> new_t hread_group.start;
END new_process. ot hers;

THREAD GROUP new_t hread_gr oup
FEATURES

start : I N EVENT PORT,;
END new t hread_gr oup;

THREAD GROUP | MPLEMENTATI ON new_t hr ead_gr oup. ot hers
SUBCOMPONENTS
new data : DATA new dat a;
new t hreadl : THREAD new_t hr eadl;
new t hread2 : THREAD new_t hread2;
CONNECTI ONS
EVENT PORT start -> new_ thread2.start;
DATA ACCESS new data -> new_t hreadl. new dat a;
DATA ACCESS new data -> new_t hread2. new dat a;
END new t hread_group. ot hers;

page 28 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.1.6. Data

Data Components can be handled by Stood in two different ways, depending
on whether they represent abstract descriptions of data structures (Classes), or
instances of such data structures (Objects). The former will be generated as
Data Components within an AADL Package, wheareas the latter will be used

to describe shared Data Subcomponentsinside a Process.

When a Class is created within a Passive Design, it will be trandlated into a
Data Component definition inside a Package. This Class can contain
Attributes and Operations that will be displayed graphically with the UML or

HOOD notations.

£i) Stood 5.0 - new_system

(design) new_packag

& (design) new_p
Z L new_packay
& (design) new_p
new_proces

(design) new_package

Fle Edit Design Component Feature Tools

Mew component
Import component...

Rename component...

object
instance of generic

Class

protected object
cyclic object

n r=n or

Change component into

sporadic object

Requirements Graphic Design lDetaiIed Design | €

= & (design) new_package
= new_package
new_data

& [design) new_process

XXX

® Lml

(" Hood

S 0dd&dF

coIprgrfoogss

rew_package

<« Operations>

€ Ty pes>

«clonstantss

<«Exceplions>

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 29

The corresponding generated AADL codeis as follow:

PACKACGE new package
PUBLI C

DATA new dat a
FEATURES

new operation : SUBPROGRAM new _operati on;
END new dat a;

DATA | MPLEMENTATI ON new _dat a. ot hers
SUBCOMPONENTS

new attribute : DATA ;
END new dat a. ot hers;

SUBPROGRAM new_oper at i on
FEATURES

nme : I N OUT PARAMETER new dat a;
END new _operati on;

END new _package;

Note that in case of several Classes defined in the same Package, they will all
be generated as a flat structure within the same namespace. This may be an
issue as several Classes may define Operations with the same name, because
the AADL doesn't support Subprogram overloading. To solve this problem, it
is possible to add the pragma more_packages to tell the code generator to
create a separate sub Package for each Class:

PACKACGE new_package: : new_dat a

END new_package: : new_dat a;

page 30 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

Next example shows how a typical UML class diagram, that has been edited in
Stood, can be trandated into AADL code. The pragma more_packages has

been used.

(design) graphLib

{design) AcqSystem
g&(design} graphLib
= graphLib

point2D
graphics

rectangle

¢ 1 ¢ 1 X

Requiremerts Graphic Design lDetaiIed Design | Checkers | Cods | Dacume

= i = e I G R S P

® Lml

PACKAGE graphLi b: : poi nt 2D

PUBLI C

DATA poi nt 2D

END poi nt 2D;

DATA | MPLEMENTATI ON poi nt 2D. ot hers

SUBCOVPONENTS
x : DATA integer;
y : DATA integer;
END poi nt 2D. ot her s;

END gr aphLi b: : poi nt 2D;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 31

PACKAGE gr aphlLi b: : graphi cs
PUBLI C

DATA gr aphi cs

FEATURES
di splay : SUBPROGRAM di spl ay;
set Col or : SUBPROGRAM set Col or;
get Col or : SUBPROGRAM get Col or;

END gr aphi cs;

DATA | MPLEMENTATI ON gr aphi cs. ot hers
SUBCOVPONENTS

col or : DATA T col or;
END gr aphi cs. ot hers;

SUBPROGRAM di spl ay
FEATURES

me : | N OUT PARAMETER graphLi b:: graphics;
END di spl ay;

SUBPROGRAM set Col or
FEATURES

me : | N OUT PARAMETER graphLi b:: graphics;
END set Col or;

SUBPROGRAM get Col or
FEATURES

me : I N OUT PARAMETER graphlLi b: : graphi cs;
END get Col or;

END graphLi b: : graphi cs;

page 32 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

PACKAGE graphLi b::rectangl e
PUBLI C

DATA rect angl e EXTENDS gr aphLi b: : graphics
FEATURES

perimeter : SUBPROGRAM peri neter;

area : SUBPROGRAM ar ea,;
END rect angl e;

DATA | MPLEMENTATI ON rect angl e. ot hers
SUBCOVPONENTS
topLeft : DATA poi nt 2D: : poi nt 2D;
bott onRi ght : DATA poi nt 2D: : poi nt 2D;
END rect angl e. ot hers;

SUBPROGRAM peri et er
FEATURES

me : | N OUT PARAMETER graphLi b::rectangl e;
END perineter;

SUBPROGRAM ar ea
FEATURES

me : | N OUT PARAMETER graphLi b::rectangl e;
END ar ea,;

END graphLi b:: rectangl e;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 33

On the contrary, when a Passive or Protected Object is created within an
Active Design, it represents a shared Data instance. This Object is supposed to
encompass the actual Internal Data and the corresponding Provided access

Operations.
(design) new_process Requirements Graphic Design] Detailed Design | Checkers | Cade | O
(design) new_package ® Hood — = e = = o=
Igﬁ(design}new_process = Uml = Og&

new_process
new_thread_group

new_data
new_thread1

new_thread2

XX X XXX

The corresponding AADL code will be:

THREAD GROUP | MPLEMENTATI ON new_t hr ead_gr oup. ot hers
SUBCOMPONENTS
new data : DATA new dat a;
new t hreadl : THREAD new_t hr eadl;
new t hread2 : THREAD new_t hread2;
CONNECTI ONS
EVENT PORT start -> new_ thread2.start;
DATA ACCESS new data -> new_t hreadl. new dat a;
DATA ACCESS new data -> new_t hread2. new dat a;
END new t hread_group. ot hers;

page 34 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

DATA new dat a
FEATURES
read : SUBPROGRAM r ead;
wite : SUBPROGRAM write;
END new dat a;

SUBPROGRAM r ead
END r ead;

SUBPROGRAM wri t e
END wite;

Note that when the Object also provides a Type that can be used to define the
Parameters of the Operations, then the name of the corresponding AADL
Data Component Type will be the name of this Type instead of the name of
the Object.

DATA new_shared
FEATURES
read : SUBPROGRAM r ead,;
wite : SUBPROGRAM write;
END new_shar ed;

SUBPROGRAM r ead
FEATURES

item: OUT PARAMETER new shared;
END r ead,;

SUBPROGRAM writ e
FEATURES

item: I N PARAMETER new shar ed;
END write;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 35

2.3.1.7. Subprograms as components

In most cases, Subprogram Components will be automatically generated from
the corresponding Subprogram Featur es definition. However it is possible to
explicitely create a Subprogram Component Type by adding an Op_Control
Object insideaProcessor aThread Group.

To create an Op_Control Object, first create a plain Object and then change it
into Op_Control with the relevant menu:

£1] stood 5.0 - new_system

Fie Edit Design Component Feature Tools Help
r

(design) new_proces: huilements Graphic Design lDetaiIed Design]
& (design) new_p Hood e 55 3 e 63
B new_packai ‘Uml = |_—| E IEI IA—I I_F’4
new_dat: f
& (design) new_p
new_proces Rename component... Drterfacess | e Active s
new_sub Change component into * passive
Edit component ¥ active << Op_cortrol > |
Connect component *| v op_control ‘| | PEW_fUbpregran |
»

Move component o S S

By creating several Op_Controls and Use links between them, it is possible to
describe functional call sequences that will be translated into a corresponding
AADL Call subsection.

page 36 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

(design) new_process Requiremerts Graphic Design l Detailed Design | Checkers | Cade | Docw

& (design) new_package (® Hood — = s ey "

=R new_package Uml = O30 ® &
L new_data

& (design) new_process

o new_process
E new_subprogram1

new_subprogram?2
new_subprogram3

X X X X1 X

PROCESS new_process
FEATURES

start : SUBPROGRAM new _subprogrant;
END new _process;

SUBPROGRAM new_subpr ogr aml
END new_subpr ogrant;

SUBPROGRAM | MPLEMENTATI ON new_subpr ogr aml. ot her s
CALLS {
new_subprogran? : SUBPROGRAM new _subprogran®;
new_subprogranB : SUBPROGRAM new_subpr ogr ans;

I
END new_subprograml. ot hers;

SUBPROGRAM new_subpr ogr an®
END new _subprogrant;

SUBPROGRAM new_subpr ogr anB
END new _subpr ogr ans;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 37

2.3.1.8. Execution platform components

There is currently no direct support of the AADL execution platform
Components in Stood. However, the two following particular cases may be
efficiently represented in the context of a pure software development process.

Firstly, the hardware environment of the software being developed with Stood
can be shown as Environment Objects. These Objects are located within the
System, at the same level as the Design, and can be used to represent AADL
Device Components, which interface are required by the Process. However,
there will be no corresponding specific code generation for now.

Secondly, it will be possible in the future to describe the deployment of the
software on a multi-processors architecture thanks to the concept of
Virtual_Nodesthat is supported by Stood.

(vnode) new_platform Requirements | Graphic Design
(design) new_package Le B
& (design) new_process F @
New_process E-new_process

new_thread1 Elnew_process
new_thread?2 new_threadl
new_thread3 new_rhreadﬂ
new_sharad new_thl'eEIdB

& (vnode) new_platfarm 4 new_shared

B new_platform » -
new_processar] -4
new_processors >

The result of the alocation of Threads onto Processors could be used to
generate the appropriate AADL binding Properties.

page 38 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.2. Features
2.3.2.1. Ports

AADL Portsrepresent variables that can be used for the transfer of control and
data between Threads. Like all the other AADL Features, they are defined
within the public interface of a Component. This implementation is not
compatible with the strong information hiding principle that is promoted by
Stood. In order to comply with these rules, AADL Ports must be represented
in Stood by an Internal Data item and a Provided getter or setter Operation.
Practically, the only definition of the Operation in the Provided Interface is
sufficient to generate the proper AADL output. To create a new Operation,
first select the target Object in the diagram, and then use the menu Feature/New
Feature/Provided/Operation.

t | Feature | Tools Help

New feature » provided * operation

It is then possible to edit the Operation signature within the text area that is
shown below the diagram. Note that an Ada-like syntax is used by Stood to
define Oper ation signatures:

ads lada] c] cpp] aadl] test] checks]

=Y PROVIDED_INTERFACE P
— TYPES

— CONSTANTS

— OPERATION_SETS

= OPERATIONS <

B new_in_data_port . . i
- L operation declaration (hood)
enoperation spec. description (te.

emoperation declaration (hood) new_in data port(port @ oin pOrT_TVpE);

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 39

To create an In Data Port, specify an In Parameter with the corresponding
data Type, for instance:

new i n_data(port : in port_type);
To create an Out Data Port, specify an Out Parameter with the corresponding
data Type, for instance:

new out data(port : out port_type);
To create an In Out Data Port, specify an In Out Parameter with the
corresponding data Type, for instance:

new i n_out data(port : in out port _type);

The AADL code that is generated by Stood for such aThread is shown below:

THREAD new_t hr ead

FEATURES
new i n_data_port : | N DATA PORT port_type;
new out data_port : OUT DATA PORT port _type;
new i n_out _data_port : I N OUT DATA PORT port _type;

END new t hr ead,;

In order to represent Event or Event Data Ports, it is necessary to specify that
the Operation execution is triggered by an ASER (ASynchronous Execution
Request) event. This can be done inside the operation properties section as
shown below. Note that, as a special case, Out Event Ports are represented in
Stood by Exceptionsinstead of Operations:

page 40 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

od

@

ada] c] cpp] aadl] test] checks]

— TYPES ~

— CONSTANTS

— OPERATION_SETS AER | rma

B OPERATIONS

E-mmn ew_in_avent 4
maoperation spec. description (te.]]
mmoperation declaration (hood) g Operation properti
mmoperation properties (hood) - trigger label : ASER

. . . . - ghstract : no
mmreal ime attributes (hood) T
rrrrrrrrrrr - l:].h.-__l-u-_'j. ' ne

It is of course possible to combine a signature and a trigger to represent Event
Data Ports. The Out Event Port can be created just by inserting an Exception:

operation view exception view

THREAD new _t hr ead
FEATURES
new_ i n_event : | N EVENT PORT,
new i n_event data_port : | N EVENT DATA PORT

port _type;
new out event _data_port : OUT EVENT DATA PORT
port _type;
new_ i n_out event _data_port : |IN OUT EVENT DATA PORT
port _type;

new_out event : OUT EVENT PORT;

PROPERTI ES
Di spat ch_Protocol => sporadic;
END new_t hr ead;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 41

Note that Stood manages System interrupts as a special case. In fact, the
supported methodology recommends not to propagate IT events along the
composition hierarchy, as opposed to the applicative events. A specific
Operation Constraint (BY_IT) has been defined to denote that the
corresponding event is triggered by a System interrupt. This trigger label must
be associated to a parameter representing the interrupt vector or identifier.

OPERATION_SETS o et

OPERATIONS i o
IJ:'I—E:::new_it

Emopeation spec. des.

mmoperation declaratio. A . i
: : operation properties (hood)
cmoperation properties.

emreal time attributes (.. - trigger label : BY IT --|reset|--
EXCEPTIONS N 'fbﬁ;:’f:;j' e
L AR IECT COMTEAL STOI inherited @ no

In that case, the AADL code generator will automatically insert all the higher
level Ports and Connections along the containment hierarchy, so that the I T
can be actually seen as being transmitted by an Out Event Port of an execution
platform Component and received by anIn Event Port of the Process.

PROCESS new_pr ocess
FEATURES

reset : I N EVENT PORT;
END new_pr ocess;

PROCESS | MPLEMENTATI ON new_pr ocess. ot hers
SUBCOVPONENTS

new thread : THREAD new_t hr ead,;
CONNECTI ONS

EVENT PORT reset -> new thread.new.it;
END new process. ot hers;

page 42 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.2.2. Port groups

Port Groups are currently not supported by the AADL code generator of
Stood. However, due to the mapping between Ports and Operations, the
appropriate representation of Port Groups will be Operation Sets that can be
used in Stood to group a set of Operations.

¥|

Note that this mapping between Port Groups and Operation Sets is
implemented in the AADL import function of Stood.

2.3.2.3. Subprograms as features

As opposed to Processes, Thread Groups, Threads and Data, Subprograms
cannot be instanciated as Subcomponents within a Component
Implementation. They must be declared as Features in a Component Type.
There are two kinds of Subprogram Features. Data Subprograms that can be
declared in the interface of Data Components and Server Subprograms that
can be declared especialy in the interface of Processes, Thread Groups and
Threads.

Operations declared in the interface of a Class or a Passive Terminal Object
or a Protected Object, will be tranglated into Data Subprogram Features. In
addition, if the specified Subprogram Component Type doesn't exist, it will
be also created.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 43

FEA_QTTTIDUTE *

DATA new cl ass
FEATURES

new _net hod : SUBPROGRAM new et hod;
END new cl ass;

DATA | MPLEMENTATI ON new cl ass. ot hers
SUBCOVPONENTS

new attri bute : DATA ;
END new cl ass. ot hers;

SUBPROGRAM new_ret hod
FEATURES

me : | N OUT PARAMETER new cl ass;
END new net hod,;

Operations declared in the interface of an Active Object and to which a
Synchronous Execution Request trigger event has been set (HSER or L SER),
will be trandlated into Server Subprogram Features. In order to specify that
the Subprogram code must be executed instead of the default Thread
execution code, aConput e_Ent r ypoi nt Property isautomatically added to
the AADL specification. In addition, if the specified Subprogram Component
Type doesn't exist, it will be also created.

page 44 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

THREAD new _t hr ead
FEATURES
new _server_sp : SERVER SUBPROGRAM new_server _sp
{ Conpute Entrypoint => new server_sp; };
PROPERTI ES
Di spatch_Protocol => aperi odic;
END new t hr ead,;

SUBPROGRAM new_server _sp
END new_server _sp;

2.3.2.4. Subprogram parameters

In Stood, Operation Parameters must be declared using an Ada like syntax.
This may be done within the operation declaration section:

= PROVIDED_INTERFACE -~
TYPES

COMNSTANTS
OPERATION_SETS
OPERATIONS

caread_buffer . . "
. . operation declaration (hood)
Enoperation spec. descri..

|rea:l_]:u:':'er-:i:e:r. : out T_item; location : in T_loc);

$

cmoperation declaration (..

The corresponding AADL code will be generated as follow:

SUBPROGRAM r ead_buf f er
FEATURES

item: OUT PARAMETER T item

| ocation : I N PARAMETER T_I oc;
END read buffer;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 45

2.3.2.5. Subcomponent access

The AADL code generator of Stood will produce a Requires Data Access
Featurein aProcess, Thread Group, Thread or Subprogram Component to
denote a reference to a remote shared Data Component. Note that Provides
Data Access and Bus Access Features are not currently supported by Stood.
To produce a Requires Data Access Feature, Use dependencies must be
drawn on the diagram, as shown below:

A |raa.'_|:-*::a_=_=

W _SUDPRoGnasm

The AADL code that is generated for this set of Componentsis asfollow:

PROCESS new process
FEATURES

renote_data : REQUI RES DATA ACCESS renot e_dat a;
END new_pr ocess;

THREAD new_t hr ead
FEATURES
new data : REQUI RES DATA ACCESS new dat a;
renote_data : REQUI RES DATA ACCESS renot e_dat a;
PROPERTI ES
Di spatch_Protocol => peri odic;
END new t hr ead,;

page 46 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

THREAD GROUP new_t hr ead_gr oup
FEATURES

new data : REQU RES DATA ACCESS new dat a;
END new t hread_group;

THREAD i nner _t hread
FEATURES

new data : REQUI RES DATA ACCESS new dat a;
END i nner _t hr ead;

SUBPROGRAM new_subpr ogr am
FEATURES

new data : REQU RES DATA ACCESS new dat a;
END new_subprogram

DATA new dat a
END new dat a;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 47

2.3.3. Connections

2.3.3.1. Between sibling components

AADL Connections between sibling Components are represented by graphical
rel ationships between the corresponding Objectsin the diagram. Like for all the
other graphical edition functions, most constructs can be shown either with the
UML or the HOOD notation. However, the HOOD view often shows more
details for Portsand Connections.

Ports Connections can be defined with Use relationships on the Operation
view. Use relationships are directional and will only connect Out and In Out
Ports from the origin to In and In Out Ports of the destination. Two opposed
links are thus necessary to fully connect two Components with compatible
composite interfaces. Dataflow labels may be added to the graphical notation to
better highlight the Data items that are propagated by the Ports.

When such links are defined, point to point mapping between Ports are
established in regards to the Port names and/or the propagated Data names.
When several Ports propagate Data of the same name, a concatenation of the
corresponding Port and Data names will be done to avoid ambiguities.

page 48 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

PROCESS | MPLEMENTATI ON new_pr ocess. ot hers
SUBCOMPONENTS
thread A : THREAD t hread A
thread B : THREAD t hread_B;
CONNECTI ONS
DATA PORT thread B. B2A -> t hread_A. B2A;
DATA PORT thread B. AB2BA -> t hread A. AB2BA;
DATA PORT thread A A2B -> t hread_B. A2B;
DATA PORT thread A. AB2BA -> t hread B. AB2BA;
END new process. ot hers;

THREAD t hread_A
FEATURES
B2A : | N DATA PORT T _port;
A2B : OUT DATA PORT T port;
AB2BA : I N OUT DATA PORT T_port;
END t hread A;

THREAD t hread B
FEATURES
B2A : OUT DATA PORT T_port;
A2B : | N DATA PORT T _port;
AB2BA : I N QUT DATA PORT T_port;
END t hread_B;

Note that the current version of the AADL code generator doesn't support
Parameter Connections.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 49

Access Connections can aso be represented by simple Use relationships
between Processes, Thread Groups, Threads or Subprograms and shared
Data Components.

PROCESS new process
END new_pr ocess;

PROCESS | MPLEMENTATI ON new_pr ocess. ot hers
SUBCOMPONENTS

new thread : THREAD new_t hr ead,;

shared _data : DATA shared_dat a;
CONNECTI ONS

DATA ACCESS shared _data -> new_t hread. shar ed_dat a;
END new_process. ot hers;

THREAD new_t hr ead
FEATURES

shared_data : REQU RES DATA ACCESS shar ed_dat a;
END new t hr ead,;

DATA shared_dat a
END shared _dat a;

page 50 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.3.2. Up and down the containment hierarchy

Ports Connections along the containment hierarchy can be defined by the
Implemented_By links (adlso called Delegate in UML 2.0) between the
Provided Interface of a container Component and the Provided Interface of
contained Components.

PROCESS new _process
FEATURES

outer_port : I N EVENT PORT;
END new_pr ocess;

PROCESS | MPLEMENTATI ON new_pr ocess. ot hers
SUBCOVPONENTS

new thread : THREAD new_t hr ead;
CONNECTI ONS

EVENT PORT outer_port -> new_thread.inner_port;
END new process. ot hers;

THREAD new_t hr ead
FEATURES

i nner_port : I N EVENT PORT,
PROPERTI ES

Di spatch_Protocol => sporadic;
END new t hr ead,;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 51

Required Access Connections may aso be defined between the Required
Interface of a container Component and the Required Interface of contained
Components. This especialy occurs when an inner Thread requires access to a
share Data Component that is also used by the Process at a higher level. This
pattern can be described with Stood thanks to the Use Uncle relationship:

|3"|"3'.:—3_::—«: Al NEW_[procsss ¥ A |-'=..1\' process

F

at higher level at lower level

PROCESS new process
FEATURES

renote_data : REQUI RES DATA ACCESS renpt e_dat a;
END new_pr ocess;

PROCESS | MPLEMENTATI ON new_pr ocess. ot hers
SUBCOMPONENTS

new thread : THREAD new_t hr ead,;
CONNECTI ONS

DATA ACCESS renote _data -> new_t hread. renot e_dat a;
END new process. ot hers;

THREAD new_t hr ead
FEATURES

renote_data : REQUI RES DATA ACCESS renvot e_dat a;
END new t hr ead,;

page 52 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.4. Operational modes

Operational Modes may be defined by creating a State Transition Diagram
(STD) for the current Process. States will be used to represent Modes and In
Event Ports defined within the Provided Interface of the Process will act as
Transition events. To create a STD, select the Process and use the contextual
menu Open state diagram.

Exit L
} [A |ra.4'_|:-":c3£_= I
SZER alrep New sub component *
ASER w TresTorT
Rename...
Change into 4

Open state diagram

It is then possible to create States and Transitions and to allocate one of the
Event Portsto each Transition.

stop

resTarT

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 53

This information will be used by the AADL code generator to produce
operational modes:

SYSTEM new_system
END new_syst em

SYSTEM | MPLEMENTATI ON new_syst em ot her s
SUBCOVPONENTS

new _process : PROCESS new _process;
END new_syst em ot hers;

PROCESS new_pr ocess

FEATURES
start : I N EVENT PORT;
stop : I N EVENT PORT,
restart : | N EVENT PORT,

END new_pr ocess;

PROCESS | MPLEMENTATI ON new_pr ocess. ot hers
MODES
init : INITIAL MODE
runni ng : MODE
suspended : MODE
init -[start]-> running;
running -[stop]-> suspended,;
suspended -[restart]-> running;
END new process. ot hers;

page 54 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.5. Properties

Real Time Attributes that have been specified in the Stood mode will be
tranglated into closest corresponding AADL Properties.

example:
ads lada] c] Cpp] aad|] test] checks]
- OBJECT ~

— module type

—Empragmas |

- DESCRIPTION T
PROBLEM <
E::EEJL'-\EI:'?I\.TE_ATTRIBUTES[tex‘[] Savetext | REAL_TIME_ATTRIBUTES

= |MPLEMENTATIOMN_COMNSTRAIM.. FERIOD

& PROVIDED_INTERFACE S 1a

- OBJECT_COMTROL_STRUCTURE

— REQUIRED_INTERFACE DEADLINE

— DATAFLOWS 10

The AADL code generated by Stood will be:

THREAD t ask
PROPERTI ES
Di spatch_Protocol => periodic;
Period => 10;
Deadl i ne => 10;
Comput e_Entrypoi nt => thread;
END t ask;

Inasimilar way, the WCET attribute that can be set for each Operation will be
trandated into a Conput e_Deadl i ne Property.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 55

When other Properties are required, they must be included into the Stood
model as a specific Constant which name is Properties. The pseudo code
section can be used to insert AADL Property associations that will be inserted
within the generated code.

example:

ods] ada] =] cpp] aadl] test] checks]

- PROVIDED_INTERFACE ”
TYFES ' [repsrfize]
= CONSTANTS

Ié!—t::lpropenies
maconstant description (text) <
constant pre-declaration (ada) ' L i
constant definition (adal constant definition (pseuda)
constant definition (c) Source Data Size =» 16 B;
constant definition (cpp)
cmconstant definition (pseudo)

The AADL code generated by Stood will be:

DATA Sanpl e

PROPERTI ES
Source_Data_Size => 16 B;

END Sanpl e;

page 56 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.4. Set generation options

When ready to generate AADL code from the current Design, switch Stood to
the code tab as shown below. If aadl has been specified as the default target
language, then this will automatically open the AADL code generator. Else, it
may be necessary to reselect theaadl tab in the bottom right area of Stood.

(design) new_process Requirements] Graphic Design] Detailed Design] Checkers Code l
{design) AADL FULL
bR @

(design) new_package

ﬁl_(design} new_process x pragmas
e

new_process
{vnode) new_platform

ods] ada] C] cpp aadl] test] checks]
OBJECT
Eopragmas
INTERMNALS
AADL GENERATED CODE
END OBJECT

The code window gives access to a few generation options (pragmas), that are
described below. To set an option, first select the Module on which it should

apply, then click on the add pragma button = , and select the appropriate
pragma in the list. When a pragma is set, its name is preceded by a >> tick.
Thelist of all the currently set pragmas is shown in the editing area where it is
possible to remove or dupplicate them, and change the value of their arguments.
Supported pragmas for the AADL code generator are listed in the next sections.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 57

2.4.1. Pragma os

This pragma can be set to specify the name of the Operating System that is
used in the System. Default name is OS. It must be set for the Root Module
only.

example:

If the pragma os(operati ng_system => ARI NC653) is set, then the
following AADL code will be generated:

SYSTEM new_system
END new_syst em

SYSTEM | MPLEMENTATI ON new_syst em ot hers
SUBCOVPONENTS

ARI NC653 : SYSTEM OS. ARI NC653;

new _process : PROCESS new _process;
END new_syst em ot hers;

page 58 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.4.2. Pragmamain

This pragma can be used to specify the main functional entry point for the
current System. The parameter value must refer to the name of one of the
Provided Operations of the main Process. This pragma must be set for the
Root Module only.

example:

If the pragma mai n(event => start) is set, then the following AADL
code will be generated:

SYSTEM new_system
FEATURES

start : | N EVENT PORT;
END new_system

SYSTEM | MPLEMENTATI ON new_syst em ot hers
SUBCOVPONENTS

new_process : PROCESS new process;
CONNECTI ONS

EVENT PORT start -> new _process.start;
END new_system ot hers;

PROCESS new_process
FEATURES
start : I N EVENT PORT,
stop : I N EVENT PORT,;
restart : IN EVENT PORT,
END new _process;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 59

2.4.3. Pragma compact

This pragma can be set to ask the generator to create only one AADL source
code file for the whole Design (Package or Process). The default option, when
the pragma is reset, is to generate one AADL file for each Component or
Package. This pragma must be set for the Root M odule only.

example:

A | NEW_procses

With such an architecture, default code generation would produce four files:
-new_pr ocess. aadl

-t hread_A. aadl

-t hread_B. aadl

- buf f er. aadl

However, if the pragma compact is set, only the file new_pr ocess. aadl
will be produced and will contain all the AADL statements for the four
Components.

page 60 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.4.4. Pragma more_packages

Stood can use two different coding patterns to produce AADL code from a set
of Classes. Default rule consists in generating a flat list of Data and
Subprogram Components that are located within a container Package.
However it may be better in some cases to create a specific sub Package for
each Class. Thisis the purpose of the pragma more_packages that must be set
for the Root Module only.

example:

The default code generation rules will produve the following AADL code:

PACKAGCE |i brary
PUBLI C

DATA cl ass1
FEATURES

net hodl : SUBPROGRAM net hod1;
END cl ass1;

DATA cl ass?2
FEATURES

met hod2 : SUBPROGRAM net hod2;
END cl ass2;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 61

SUBPROGRAM net hod1l
FEATURES

me : | N OUT PARAMETER cl assli;
END net hod1l;

SUBPROGRAM net hod?2
FEATURES

me : I N OUT PARAMETER cl ass?;
END net hod2;

END |ibrary;

Asthe AADL doesn't support Oper ation overloading, there could have been a
problem if the two methods had the same name. On the contrary, with a
pragma more_packages properly set, the generated code will become:

PACKAGE | i brary
PUBLI C

DATA voi d
END voi d;

END |ibrary;

page 62 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

PACKAGE library::classl
PUBLI C

DATA cl ass1
FEATURES

net hodl : SUBPROGRAM net hod1;
END cl ass1;

SUBPROGRAM net hod1l
FEATURES

me : I N QUT PARAMETER cl ass1;
END net hodl;

END |ibrary::classi,

PACKAGE library::class2
PUBLI C

DATA cl ass?2
FEATURES

met hod2 : SUBPROGRAM net hod2;
END cl ass2;

SUBPROGRAM et hod?2
FEATURES

nme : I N OUT PARAMETER cl ass2;
END net hod2;

END library::class2;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 63

2.4.5. Pragmarenames

When referencing an existing Component Type or Implementation to
instanciate a Subcomponent, it may be necessary to specify the Package
which contain the referenced Component. In Stood, this will be generally
specified by using a dot notation. However, the internal naming rules of the tool
only allow a smple name for the remote Package. In order to get the
appropriate full name for the Package in the AADL code, a pragma renames
can be used. This pragma must be set for each Environment Object that needs
it, and takes as parameter the actual name to be used in the AADL code:
pragma renames (full_name=> A.B.C.P)

example(taken from SAE ASH506, section 5.1):

Mame : basic.string

Data Component Personnel Record has a Data SubComponent
Hone_addr ess which Data Type is provided by the Package relief.
However, rel i ef isin effect the sub Package sei ::aadl::relief. A
pragma renames (full_name => sei::aadl::relief) has thus been set for the
local Environment Moduler el i ef , as shown below:

page 64 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

(design) DataCompanents Hequirements] Graphic Design] Detailed Design] Checkers Code ||

(design} Basic FULL
I.J—]_—B(design}DalaComponents -4 ﬂ e &
DataComponents =4 pragmas
Personnel_record =4 FRLOVE rensmes
Personnel_database & (full name =» --|sei.zzdl.relief|--)
SEl_Personnel_additio. ¢ -
Basic =4
relief =4
— (design) relief
— (design} Sei

The AADL generated code thus becomes:

DATA Personnel record
FEATURES

updat e_address : SUBPROGRAM updat e_addr ess;
END Per sonnel record;

DATA | MPLEMENTATI ON Per sonnel _record. ot hers
SUBCOMPONENTS

Nane : DATA basic::string;

Home address : DATA sei::aadl::relief::Address;
END Per sonnel record. ot hers;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 65

2.4.6. Pragma behavior

One of the current lacks in the AADL specification is the ability to describe
finely the actual behavior of a Thread or a Subprogram, in order to be able to
perform various kinds of verifications. However, it is possible to extend the
language thanks to Property Sets and Annexes. As a result of the French
RNTL project COTRE, a behaviora Annex for the AADL has been defined.
Although thereis still some ongoing work on that subject, the current version of
this Annex has been included into Stood.

To activate the generation of this Annex, the pragma behavior (annex =>
COTRE) must be set for the Root Module. The effect will be to copy the
contents of the OBCS and OPCS pseudo code sections into the corresponding
Component | mplementation.

example(taken from COTRE):

cockz ¥

If the appropriate pseudo code sections have been properly completed, the
following code will be generated for the Component t ask1l, if the pragma
behavior (annex => COTRE) has been set:

page 66 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

THREAD t ask
FEATURES
semaphorel : REQUI RES DATA ACCESS senmaphore;
semaphore2 : REQUI RES DATA ACCESS senmphore;
END t ask;

THREAD | MPLEMENTATI ON t ask. T1
PROPERTI ES
Di spatch_Protocol => periodic;
Period => 13;
Comput e_Entrypoi nt => thread;
ANNEX COTRE {**
STATES
s0, sl1, s2, s3, s4, s5, s6, s7, s8 : STATE
sO : I N TIAL STATE;

TRANSITICNS
-[1->s1 { PERODIC WAIT };
sl -[1->s2 { COWPUTATION(1.9ns, 1.9n8) };
s2 -[semaphorel.wait ! (-1.0ns)]-> s3;
s3 -[]-> s4 { COWUTATI ON(O. 1ns, 0. 1ns) };
s4 -[semaphore2.wait ! (-1.0ns)]-> sb5;
s5 -[]-> s6 { COWUTATI ON(2. 5n8, 2.5ns) };
s6 -[semaphore2.release !]-> s7;
s7 -[]1-> s8 { COWUTATION(1. 5ns, 1.5n8) };
s8 -[senmmphorel.rel ease !']-> sO;
**}1
END t ask. T1;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 67

2.4.7. Pragmareverse

This pragma is currently useful only in collaboration with the pragma
behavior. It offers the ability to perform round trip engineering between the
AADL source code and the Stood design model for the behavioral code located
into the corresponding Annex. The pragma reverse has no parameter and must
be set on the Root Module only.

example:

If the two pragmas behavior (annex=>COTRE) and reverse have been set,
then the following code will be generated for an empty Thread
I mplementation:

THREAD | MPLEMENTATI ON new_t hr ead. ot hers
ANNEX COTRE {**
-- <begi n pseudo:: obcs new_t hread>
-- <end>
-- <begi n pseudo:: QpDef new_ thread thread>
-- <end>
**};

END new t hr ead. ot hers;

Annex specific code may then be added between the begi n and end tags and
will be fed back to the Stood model, when pressing the round trip button:

REVERT

(i

page 68 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.4.8. Pragmatype name

By default, an AADL Component Type takes the same name as the
corresponding Module in Stood. It is however possible to change this name by
specifying it in a pragma type name (name => reused_type name). This
pragma must be set for each M odule that needsiit.

example:

If the pragma type name (name => task) has been set for the Module
t hr ead, then the following code will be generated:

THREAD t ask
PROPERTI ES
Di spatch_Protocol => periodic;
Conput e_Entrypoi nt => t hread,
END t ask;

This pragma may be especialy useful in collaboration with the pragma
implementation_name, to declare several | mplementationsfor the same Type.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 69

2.4.9. Pragma implementation_name

Default name for an AADL Component Implementation is ot hers. It is
however possible to change this name by using apragma implementation_name
(name => other_name). This pragma must be set for each M odule that needs
it. This pragma may be especially useful in collaboration with the pragma
type_name, to declare several Implementationsfor the same Type.

example:

If the following pragmas have been set:
- For Modulenew _pr ocess:
pragma implementation_name (name => demo)
- For Modulet ask1:
pragmatype name (name => task)
pragma implementation_name (name => T1)
- For Modulet ask2:
pragmatype name (name => task)
pragma implementation_name (name => T2)

Then the following code will be generated:

PROCESS | MPLEMENTATI ON new_pr ocess. denp
SUBCOVPONENTS

taskl : THREAD t ask. T1;

task2 : THREAD task. T2;
END new process. deno;

page 70 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.5. Generate and view AADL code

To start the generation of the AADL code, select the Tools/Code/Full extraction

FULL

menu or simply press the =l button, then select OK in the dialog box.

(design) new_process

Hequirements] Graphic Dezign] Detailed Dezign] Checkers Code l[

(design) AADL

(design) new_package
& (design) new_process
new_process

{vnode) new_platform

x
e

ods] ada] c] cpp 2adl ltest] checks]

OBJECT
o pragmas

INTERMALS

AADL GENERATED CODE
END_OBJECT

B & @
pragmas

FRAGML compact

When completed, the result of the code generation process is shown as follow:

(design) new_process

— (design) AADL
(design} new_package
C- @ (design) new_process
NEW_process
(vnode) new_platform

=
=

ods | ada] c] cpp Bad ltest | checks |

- OBJECT

Epragmas
INTERMALS
AADL GENERATED CODE
cmexiraction messages

e gadl

Requirements] Graphic Design] Detailed Design] Checkers Code] Docurnet

RADL ADR | REVERT
RalRE
extraction messages
=== begin code extraction : Mon May 16 08:59:44 2005
Hzlt. Program terminated normally
=== end code extracticn : Mon May 14 08:59:45 2005

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 71

For each Module of the Design, select the .aadl section to edit the
corresponding generated AADL code. If the pragma compact has been set, then
the whole AADL specification will be located inside the Root M odule.

(design) new_process

(design) AADL
(design) new_package
& (design) new_process

x
e

Reguirements] Graphic Design] Detailed Design] Checkers Code l
AADL ADR | REVERT

‘ol @
aadl

‘ newy_process SYSTEM new_system
{vnode] new_platform END new_syatem:
ods | ads] o] cpp aa':"]lesl] checks | SYSTEM IMPLEMENTATICH new_syatem.cthers
OBJECT SUBCOMEONENIS
mmpragmas new_process : PROCESS new process;
END new system.others;:

INTERMNALS -
AADL GENERATED CODE | |zrocEss new process
mmextraction messages END new_process;
o= gadl
emakafila FROCESS IMFLEMENTATION new process.others

It is possible to make changes in theses source files. Changes can be saved with

AADL

the Esaea| button to the AADL syntax can be checked with the
button. If the pragma rever se has been set, the changes done between the round

trip engineering tags will be fed back to the Design model by pressing the -
button.

The AADL source file can also be edited directly from the Design database.
Default location isthe _aadl subdirectory in the Design directory. To open it
from Stood, use the Tools/Open directory/Design directory menu.

page 72 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

3. AADL import

To import an existing AADL specification into a new HOOD Design or to
update an existing one, open an existing System or create a new one, then use
the Design/New design from/aadl or Design/Update design from/aadl menu.

£1) Stood 5.0 - new_system

File Edit Design Component Feature Tools Help
MNew design i
Designs New design from b sl C

(desiq xml...
[desi
(desig aadl...

It is then necessary to select a. aadl file from the dialog box and press the
Open button.

Important Notes:

- All the AADL source files to be parsed to create or update the Design must
be located within the same directory.

- Avoid any code dupplication within the parsed directory.

- The selected file name must be the name of the root AADL Package or
Component to be parsed. It must include the Component Type name and the
Component I mplementation name, separated by an underscore character.

- To get proper results, al Subcomponents must refer to an existing
Component Type and I mplementation.

- It may be necessary to perform the import in several steps, one for each root
Package or Component. In that case, it may be necessary to rename the
corresponding AADL sourcefileif it contains several roots.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 73

Example:

Let's consider the following AADL source file (taken from SAE AS5506, section
4.5). It is composed of two parts. the Package Sanpl i ng and its contents, as

well asthe Process I mplementation Sanpl e_Manager . SI ow_Updat e and
its contents.

package Sanpling
public
data Sanpl e
properties
Source_Data_Si ze => 16 B
end Sanpl e;

data Sanpl e_Set
features
read : subprogram
wite : subprogram
properties
Source_Data_Si ze = 1 M;
end Sampl e_Set ;

data Dynani c_Sanpl e_Set extends Sanpl e_Set
end Dynam c_Sanpl e_Set ;
end Sanpl i ng;

thread I nit_Sanpl es
features
OrigSet : requires data access Sanpling:: Sanpl e_Set
Sanpl eSet : requires data access Sanpling:: Sanpl e_Set
end Init_Sanples ;

thread Col |l ect _Sanpl es
features
I nput_Sanple : in event data port Sanpling:: Sanpl e;
Sanpl eSet : requires data access Sanpling:: Sanpl e_Set ;
end Col | ect _Sanpl es ;

page 74 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

thread i nplenmentation Coll ect_Sanpl es. Bat ch_Updat e
refines type
I nput _Sanple: refined to in event data port
Sanpl i ng: : Sanpl e_Set ;
end Col | ect _Sanpl es. Bat ch_Updat e;

thread D stribute_Sanples
features
Sanpl eSet : requires data access Sanpling:: Sanpl e_Set ;
Updat edSanpl es : out event data port Sanpling:: Sanpl e;
end Distribute_Sanples ;

process Sanpl e_Manager

features
I nput _Sanple: in event data port Sanpling:: Sanpl e;
Ext ernal _Sanpl es: requires data access Sanpling:: Sanpl e_Set;
Result _Sanpl e: out event data port Sanpling:: Sanpl e;

end Sanpl e_Manager ;

process i npl ementati on Sanpl e_Manager. Sl ow_Updat e
subconponent s
Sanpl es: data Sanpling:: Sanpl e_Set ;
Init_Thread : thread Init_Sanples;
-- the required access is resolved to a subconponent decl
Col | ect _Sanpl es: thread Col |l ect _Sanpl es. Bat ch_Updat e;
Distribute: thread Distribute_Sanpl es

connecti ons
data access Sanples -> Init_Thread. Sanpl eSet ;
data access External _Sanples -> Init_Thread. Oi gSet;
data access Sanpl es -> Col |l ect _Sanpl es. Sanpl eSet ;
event data port Input_Sanple -> Collect_Sanpl es. | nput_Sanpl e;
data access Sanples -> Distribute. Sanpl eSet ;
event data port Distribute.UpdatedSanpl es -> Result_Sanpl e;

end Sanpl e_Manager. Sl ow_Updat e

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 75

To properly import this AADL code into Stood, it is necessary to create two
separate directories, each of them containing a copy of the original file. Within
the first directory, the source file must be renamed into sanpl i ng. aadl , and
within the second directory, the same file must be renamed into
sanpl e_manager _sl ow_updat e. aadl . The import process will be done
in two steps, one to import the Package, and one to import the instanciated
Process. Note that the two files could have been let in the same directory if the
had contained no dupplicated code.

(design} sample_manager_slow_update

=~ @ (design) sample_manager_slow_update
B sample_manager_slow_update

Collect_Samples
Distribute

Samples
Init_Thread

— Sampling

— BExternal_Samples

- & (design) sampling

B- sampling

Sample
Sample_Set
Dynamic_Sample_Set
— Sample_Manager_Slow_Update
— BExternal_Samples

After some simple changes in the diagrams layout to improve the readability,
the result is as follow. The diagrams below just show the architecture. Detailed
design information is aso imported into the database, such as some Properties
and comments. On the contrary some AADL constructs are not supported by
the import function yet. Each diagram can be displayed either with the HOOD
or the UML 2.0 graphical notation.

page 76 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

The high level view of the architecture shows an Active Component that
represents the Process instance, a Passive Component that represents the
Package of Data Types (note that a better representation would have been an

UML Package there), and an external shared Component instance that is
required by the Process.

<« System s : SYSTEM_CONFISURATION

The diagram showing the contents of the Process has been provided here with
the HOOD notation that offers more details. It is easy to recognize the three
Thread Subcomponents and the local shared Data instance. Data Ports are
mapped to Oper ations like for the AADL export function.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 77

Finally, the contents of the Package shows three Classes that are displayed
with the UML notation which is more appropriate here. Note that the
inheritance link between the two Classes Dynam c¢_Sanpl e_Set and
Sanpl e_Set is not shown because the it is currently managed a a
Component Implementation Extension level only. Sour ce_Data_Si ze
Properties are represented by Constants in the Stood Design model.

s Irterfocess + sompling
_‘C’-F— ng
coDperationss Lrynas Sample_Set

After this import operation, the software design process may continue by
adding detailed design information, such as design documentation items and
target language code sections. It becomes then possible to use the existing
verification and automatic code and documentation generation tools, to complete
the full AADL to code industrial processthat is supported by Stood.

page 78 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 79

* T'ni

Technology Innovation

www.tni-world.com
stood@tni-world.com

TNI Europe Ellidiss Technologies
Triad House Technopdle Brest-1roise
Mountbatten Court 115 rue Claude Chappe
Worall Street 29280 Plouzané
Congleton Brittany
Cheshire France
CW12 1AG
UK

+44 1260 291 449 +33 298 451 870

