
Stood

Coding in C
User Manual
revision A

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 1

Pierre Dissaux

page 2 - STOOD Coding in C User Manual © TNI Europe - May 2005

Contents
1. C mapping overview 5

2. C coding sections 8
2.1. headers 9
2.2. declarations 11
2.3. behavioural and procedural code 18

3. C generation options 26
3.1. main options 27
3.2. RTOS options 36
3.3. presentation options 39
3.4. function options 46
3.5. other options 52

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 3

page 4 - STOOD Coding in C User Manual © TNI Europe - May 2005

1. C mapping overview
The Stood architectural model may easily be transformed into an appropriate
C source code file structure. C standard code generation rules cover efficiently
the following basic transformations:
• Components (or Classes) -> a pair of source files (.h and .c)
• Include and Use relationships -> #include directives
• Delegate and Implemented_By relationships -> #define directives
• Operations, Types, Constants and Data -> respectively functions,
typedef, const and static variables

However, the use of an automatic code generator, brings additional benefit to
usual C development practices:
• handling name spaces using Component name as a prefix.
• building makefile dependencies from the Required Interfaces.
• producing commented code using the textual descriptions found

inside the Object Description Skeletons (ODS) .

On the contrary, a few Stood concepts are generally more difficult to process,
due to the known weaknesses in the ANSI C language definition: Exceptions,
Generics, Object-Oriented concepts, Virtual Nodes (for distributed systems)
and of course, tasking which support is mandatory for Real-Time applications.

Support of tasking for a C program requires access to RTOS entries. Stood
supports two different strategies for Real-Time code. The first strategy is
known as the explicit mapping, and consists in accessing the RTOS as a library
that must be made visible from the applicative Design, as an Environment.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 5

This library is also represented by a Root Component in the current System,
so that it can be shared by other Designs. Access to RTOS entries must then
be managed in the same way as any other Type or Constant reference or
Operation call. This solution is very flexible, but doesn't provide the maximum
of value added to the designer. The second strategy, called the implicit mapping,
attempts to hide most of the Real-Time complexity to the Application
designer. To reach this goal, all the RTOS calls are generated automatically by
the code generator. Two possible implementations are provided. The first one
consists in a direct insertion of RTOS primitives calls into the generated code,
whereas with the second implementation, generic macro-commands are inserted,
to be expanded later by the C pre-processor. To support tasks and inter-task
communications, the C code generator has been extended with the following
generation rules:

• Threads are created for each Component providing at least a
protocol constrained operation (HSER, LSER, ASER).

• Two communication channels are created for each constrained
operation: a channel for the control flow, the in and in out data
flow, and a channel for out, in out dataflow and the return of the
control flow). They are handled by appropriate calling
procedures.

• An unique separate piece of code (the OBCS) is generated to
encompass all the protocol, state and time out constrained
operations of a given Component.

• Thread initialization and finalization code is automatically
generated.

• LICE monitoring messages are elaborated to trace each
constrained operation activation.

• Code generator options may be controlled by dedicated pragmas.

page 6 - STOOD Coding in C User Manual © TNI Europe - May 2005

client

server

OBCS

op1 OPCS_op1

op2 OPCS_op2

OPCS_op3

OPCS_op4

calling_op1

calling_op2

calling_op3op3

op4

client process

server process

generated code

not constrained operation

constrained operations

communication
channels

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 7

2. C coding sections
While accepting C source within the coding sections of the design structure,
Stood performs a lexical analysis of the entered code to identify all the local
dependencies related the edited section. This local dependency information is
stored into a symbol table which is stored at the same location than the code
section.

Before starting the code generation process, all the symbol tables are compiled
into a cross-reference table that provides valuable information to the code
generator to perform all the appropriate ordering and inclusions operations that
will let the produced code be compiled.

Like for all the other sections of the design data structure, the name and storage
location of the C coding sections may be customized by editing the DataBase
descriptor file. The names and storage locations specified below are related to
the default configuration of the tool, and may differ from the actual
configuration if some customizations have been performed.

The C coding sections that can be handled by the Stood design data structure
(ODS) are presented below in three sub-groups:

• Headers
• Declarations
• Behavioural & procedural code

page 8 - STOOD Coding in C User Manual © TNI Europe - May 2005

2.1. Headers

Headers may be defined for both .h and .c generated files. These header
information can be fully hand written within the appropriate section of the
design data structure or can be automatically generated if these sections are left
empty and the pragma comment is set. A global code file header section can
also be added at the beginning of all the generated files. These three header
sections may be defined for each Component.

The spec and body headers may be substituted or appended by one of the
standard design documentation section. The pragmas subtitute_header and
append_header, that are described in § 3.3, must be used for that purpose.

2.1.1. Spec file header (c)

Contents of these sections must be valid C code. In particular, it must include
the appropriate comments separators if necessary. When this section is left
empty and the pragma comment is set, the header is automatically generated,
and looks as follow:

/***/
/* PROJECT : < $PROJECT variable set in initialization file > */
/* COMPANY : < $COMPANY variable set in initialization file > */
/* FILENAME : < actual name of the file > */
/* DESIGN NAME : < name of the current design > */
/* MODULE NAME : < name of the current module > */
/* DESCRIPTION : < contents of the "Statement of the Problem" > */
/* FUNCTION NAMES : < list of the provided operations > */
/***/
/* Creation date (MM/JJ/AA): < date of the day > */
/***/

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 9

Note that $PROJECT and $COMPANY represent two variables that will be
expanded by their value during the generation process. The value of these
variables can be customized within the initialization file (stood.ini on
Windows and .stoodrc on Unix), in the Environment category.

2.1.2. Body file header (c)

Contents of these sections must be valid C code. In particular, it must include
the appropriate comments separators if necessary. When this section is left
empty and the pragma comment is set, the header is automatically generated, in
a similar way as the spec file header.

2.1.3. Code file header (text)

Contents of these sections doesn't require to be compliant with the C syntax, as
the comment separators will be automatically added by the code generator.
Unlike the two previous sections, this header is part of the main design
structure (ODS) and is shared by by all the code generators.

This text is included at the top of each generated C file associated to the
Component, and before the spec and body file headers. No default text header
is generated when the section is left empty.

page 10 - STOOD Coding in C User Manual © TNI Europe - May 2005

2.2. Declarations

C declarations can be directly inserted within the design structure. A declaration
must be given for each Operation, Type, Constant and Data. Function
prototypes are always automatically generated from the HOOD Operation
declarations, so there is no specific C coding section for that. Features
belonging to the Provided Interface are generated in the .h file whereas those
belonging to the Internals are generated in the .c file.

2.2.1. Operation declaration (hood)

Operation declaration must be entered in compliance with the HOOD syntax,
restricted to the features supported by the ANSI C language. For instance,
although allowed by the HOOD syntax, the use of a string literal instead of an
operation identifier is only valid for Ada operators, and the use of the & type
specifier is only valid for C++ parameters passed by reference. These valid
HOOD syntax would produce uncorrect C code. The syntax that can be used
for a correct C code generation of an Operation declaration, is formally
described below:
operation_declaration ::= identifier
 [op_parameter_part] [op_return_part] ;
op_parameter_part ::=
 (op_parameter {; op_parameter})
op_return_part ::=
 RETURN type_name {*}
op_parameter ::= identifier :
 op_parameter_mode type_name {*}
 [:= expression]
op_parameter_mode ::= in | out | in out
type_name ::= [identifier .] identifier

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 11

These Operation declarations will be translated into proper C function
prototypes by the code generator. The op_parameter_mode is included as a
comment within the C prototype. When the in mode is used, then the
corresponding parameter will be generated as a const.
Example of a HOOD operation declaration:
O(

x : in int := 0;
y : out int;
z : in out int;
p : in int*

) return M.T;

and of its translation into a C function prototype:
M__T M__O(const int x /*in*/, int y /*out*/,
 int z /*in out*/, const int *p /*in*/);

Note that HOOD enforces the use of explicitely defined types for all the
parameters of Operations. In fact, due to this syntax, it is not possible to pass
directly a complex type within a function prototype. This is in particular true
for array types that must be properly defined as a explicit type, and used in the
prototype by its type reference. Also note that, although supported by
HOOD, function overloading and default values for parameters are not
supported by the C syntax.

HOOD supports multiple name spaces, and implicitely considers that each
Component defines a new name space for identifiers. That's why type
references must include the name of the Component that actually provides the
Type. This dot notation may be omitted if the Type is provided by the local
Component, or by a standard C library, or another remote C file that doesn't
use this convention. The dot separator is translated into a "__" separator by the
C code generator.

page 12 - STOOD Coding in C User Manual © TNI Europe - May 2005

If the pragma return_const is used for an Operation, then the return type
reference of the corresponding generated C prototype will be preceded by the
keyword const. Here is the generated code for the previous example with the
pragma return_const (operation_name => O) set for the Component M:
const M__T M__O(int x /*in*/, int y /*out*/,
 int z /*in out*/, const int *p /*in*/);

If the pragma incomplete_prototypes is set, then all the generated C prototypes
will only list the parameter types, without showing the parameter names. Here
is the generated code for the previous example with the pragma
incomplete_prototypes set in the Root Component:
M__T M__O(int /*in*/, int /*out*/,
 int /*in out*/, const int * /*in*/);

If the pragma pointer is set for a given op_parameter_mode, then the type
of the all parameters of this mode will be interpreted as pointers. Possible
values for this pragma are: in_mode; out_mode and inout_mode. Here is the
generated code for the previous example with the pragma
pointer(parameter_mode => out_mode) set in the Root Component:
M__T M__O(int x /*in*/, int *y /*out*/,
 int z /*in out*/, const int *p /*in*/);

If the pragma not_ANSI is set, then no prototype will be generated:
M__T M__O();

Note that the default generation rules put an explicit external linkage to all the
provided and internal functions. The pragma static (refer to §3.5.5), must be
used to get an internal linkage for internal functions.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 13

2.2.2. Type definition (c)

The type definition section must contain a valid C type declaration. A summary
of this syntax is given below. Please refer to the ANSI C Reference Manual for
further details.

type_declaration ::= typedef
 type_definition type_name ;
type_definition ::= type_name
 | struct_definition
 | enum_definition
 | union_definition
type_name ::= [identifier __] identifier

If this section is left empty, the code generator will attempt to use any other
appropriate information from the design data structure. If the type attributes
(hood) section doesn't contain NONE, then it will be automatically translated
into a C struct_definition. Otherwise, if the type enumeration (hood)
section doesn't contain NONE, then it will be automatically translated into an C
enum_definition.

Example of HOOD definition with Attributes, for a Type T in Component M:
ATTRIBUTES x : int := 0, y : M.A

and the corresponding C type definition that is automatically generated by
Stood. Note that default values are not allowed in C struct declarations:
typedef struct { int x; M__A y } M__T;

However, only the dependencies found in the type definition section, are
properly managed by the code generator. If this section is left empty, remote
types of attributes could be ignored by the compiler, and cause parse errors.

page 14 - STOOD Coding in C User Manual © TNI Europe - May 2005

Example of a HOOD definition with Enumeration elements, for a Type T in
Component M:
ENUMERATION red, yellow, green

and the corresponding C type definition generated by Stood:
typedef enum { red, yellow, green };

While completing the type definition section, it is also possible to ask for a
template by using the relevant item of the contextual menu of the text editing
area. If the type attributes (hood) or type enumeration (hood) sections don't
contain NONE, they will be used to propose the corresponding templates of C
type definitions. These templates contain several type definition proposals, but
only one C type definition must be kept in the type definition section.

HOOD supports multiple name spaces, and implicitely considers that each
Component defines a new name space for identifiers. That's why type
references must include the name of the Component that actually provides the
Type. This dot notation may be omitted if the Type is provided by the local
Component, or by a standard C library, or another remote C file that doesn't
use this convention. The dot separator must be an actual "." character in all
expressions compliant whith the HOOD syntax, and will be translated into a
"__" separator by the C code generator. The dot separator must be entered in
its definitive form "__" in all expressions compliant with the C syntax, and
won't be altered by the C code generator.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 15

2.2.3. Constant definition (c)

The constant definition section must contain a valid C constant declaration. A
summary of this syntax is given below. Please refer to the ANSI C Reference
Manual for further details.

constant_declaration ::=
 #define constant_name value
| const type_name constant_name = value ;

constant_name ::= [identifier __] identifier
type_name ::= [identifier __] identifier

Stood accepts constant definitions to be given either by a #define directive or
by a const qualifier on data declarations. These declarations, including the
keyword #define or const, must be entered in the constant declaration
section, and will be pasted into the generated code files.

Examples of code to be typed in the section constant definition (c).to declare a
Constant C in the Component M. Such examples can be automatically pasted
to the editing area, with the paste from template contextual menu:

#define M__C 0
or:
const int M__C = 0;

Note that the default generation rules put an explicit external linkage to all the
provided and internal Constants. The pragma static (refer to §3.5.5) must be
used to get an internal linkage for internal Constants. When declared static,
the "dot" notation is not mandatory for internal Constants.

page 16 - STOOD Coding in C User Manual © TNI Europe - May 2005

2.2.4. Data declaration (c)

The data declaration section must contain a valid C variable declaration. A
summary of this syntax is given below. Please refer to the ANSI C Reference
Manual for further details.

variable_declaration ::=
type_name variable_name = value ;

variable_name ::= [identifier __] identifier
type_name ::= [identifier __] identifier

The standard design rule promoted by HOOD is to avoid global variables This
means that the default configuration of Stood doesn't allow to create provided
Data. It means that with this default configuration, only internal Data are
allowed and all dataflows between Components must be controled by access
functions, in order to cope with data hiding principles. However, this rule may
be by-passed by appropriate changes in the configuration files, to comply to
alternate project wide or company wide processes.

Note that the default generation rules put an explicit external linkage to all the
Data. The pragma static (refer to §3.5.5) must be used to get an internal linkage
for internal Data. When declared static, the "dot" notation is not mandatory
for internal Data.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 17

2.3. Behavioural and procedural code

The HOOD method distinguishes behavioural from procedural parts of the
implementation. Although it is not always so easy to separate these two sub
sets while coding, it is much easier to manage that at the design level. The
procedural code refers to function bodies implementing sequentially executed
code that is not dependent upon its environment. On the contrary, behavioural
code contains all the statements handling the change of behaviour due to the
change of the internal state or to inter tasks communication.

The procedural piece of code is defined for each individual terminal Operation
and is called the OPCS (OPeration Control Structure), whereas the behavioural
code is global to a terminal Component and is called the OBCS (OBject
Control Structure). With Stood, the OPCS is always hand-coded within the
operation code (c) section. On the contrary, the OBCS may be automatically
generated from the design model, either from a State Transition Diagram for
state constraints on Operations, or from inter-tasks communication protocol
defined for constrained Operations provided by Active Components. The
OBCS code may also be hand coded through the obcs code (c) section.

The automatic implementation of a State Transition Diagram is always
available, whereas the automatic code generation for inter-tasks communication
protocols needs to refer to a dedicated RTOS (Real Time Operating System)
library, which must be specified by a code generation pragma.

Inputs for behavioural and procedural code generation consist in four sections
related to the State Transition Diagram, a section for the OBCS and a
section for the OPCS.

page 18 - STOOD Coding in C User Manual © TNI Europe - May 2005

2.3.1. State assignment (c)

The state assignment C
A summary of this syntax is given below. Please refer to the ANSI C Reference
Manual for further details.

state_assignment ::= assignment { assignment }
assignment ::= variable_name = value ;
variable_name ::= [identifier __] identifier

The designated variables, that acts as state variables, must be either existing
internal Data of the current terminal Component, if it is an Object, or existing
Attributes if it is a Class. Assignments can be replaced by Operation calls.

2.3.2. State test (c)

The state test section must contain a valid C logical expression applied on a set
of variables. A summary of this syntax is given below. Please refer to the ANSI
C Reference Manual for further details.

state_test ::= logical_expr { logical_expr }
logical_expr ::= [logical_oper]

variable_name rel_oper value
log_oper ::= ! | && | ||
rel_oper ::= == | != | < | <= | > | >=
variable_name ::= [identifier __] identifier

The designated variables, that acts as state variables, must be either existing
internal Data of the current terminal Component, for an Object, or existing
Attributes for a Class. Operations returning proper values can also be used.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 19

2.3.3. Transition condition (c)

The transition condition section must contain a valid C logical expression
applied on a set of variables. A summary of this syntax is given below. Please
refer to the ANSI C Reference Manual for further details.

trans_cond ::= logical_expr { logical_expr }
logical_expr ::= [logical_oper]

variable_name rel_oper value
log_oper ::= ! | && | ||
rel_oper ::= == | != | < | <= | > | >=
variable_name ::= [identifier __] identifier

This capability to add conditions to Transitions is a way to simplify the State
Transition Diagram by reducing the number of explicit States. It can also be
useful to express dependencies upon remote state variables.

One typical use of conditions for Transitions is demonstrated by the
implementation of a counter which internal state variable is the value of the
counter. Instead of defining a State for each possible value of the counter, the
HOOD approach will be to specify only the States of receptivity of the
provided Operations, that is here increment and decrement. The State
Transition Diagram can thus have only three States, init, max and
intermediate, whatever the size of the counter is. This introduces non-
determinism for Transitions, that will be resolved by adding transition
condition sections.

page 20 - STOOD Coding in C User Manual © TNI Europe - May 2005

2.3.4. Transition exception (c)

The transition exception section must contain any valid C executable statement
Please refer to the ANSI C Reference Manual for further details.

Default behaviour is that nothing is done when an Operation is called while the
current State doesn't accept it (that is there is no Transition triggered by this
Operation to exit from the current State). If a particular action is required in
such cases, the section transition exception can be used.

Example:
void file__write(char* text /*in*/)
{
 if (file__state != is_locked) {
 if (disk__not_full()) {
 OPCS_write(text);
 file__state := is_locked;
 }
 else
 printf("file is already locked\n");
 }
}
This sample of generated code used the following information from the design
model:

state test: file__state != is_locked
transition condition: disk__not_full()
state assignment: file__state := is_locked;
transition exception: printf("file is already locked\n");

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 21

2.3.5. Obcs code (c)

The OBCS (OBject Control Structure) should contain all the middleware code
between the external Operation interface (function prototype) and its body
located in the section operation code of the OPCS (OPeration Control
Structure). The obcs code section is shared by all the Operations of the
Component and is the most appropriate location to implement multitasking
and communication code. This section is usually generated.automatically.
However, it can also be hand coded, in which case it must contain a set of valid
C declarations and or function definitions. If the section obcs code is not empty
the corresponding output of the automatic code generation will be substituted
by the contents of this section.

The obcs code section can also be used to capture the generated code, customize
it, and make this changes persistent for the future code generations. To feed this
section back from the generated code, please use the pragma reverse and accept
the changes with the reversor tool.

page 22 - STOOD Coding in C User Manual © TNI Europe - May 2005

Client Components

OBCS

Constrained Operations

OPCS

prototype prototype prototype prototype

OPCS OPCS OPCS

The default code generation rules for the obcs code will be applied only for
Active Components providing protocol Constrained Operations.and when a
target RTOS (Real Time Operation System) has been specified with the
pragma target In all the other cases, no code will be generated for the OBCS.
These default rules consist in set of type and variable declarations, and function
definitions. Only the main structure of the OBCS generation rules is
summarized below:

obcs_body ::=
obcs_task_declaration
{ server_task_declaration }
{ i_o_channel_declarations }
obcs_stop_channel_declaration
{ server_task_stop_channel_declaration }
{ i_o_message_declarations }
{ entry_calling_procedure }
obcs_init_procedure
{ server_task_init_procedure }
obcs_exec_procedure obcs_stop_procedure
{ s_task_exec_procedure s_task_stop_procedure }
obcs_term_procedure
{ server_task_term_procedure }

Note that when the automatic code generation of the OBCS is activated,
additional code is also included to the main function, in order to properly
elaborate and initialize the Real Time features at run time.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 23

The main thread of an Active Component is called the OBCS. Each protocol
Constrained Operation acts as an entry for the thread OBCS. When an entry
is accepted, the corresponding function body (OPCS) is executed. Intertasks
communication is managed by channels. Channels carry the control flow
(call_ and return_ parameters) and the various function arguments if there
are any. There is one pair of channels for each Constrained Operation: an
incoming channel carrying the in, in out and call_ parameters, and an
outcoming channel carrying the out, in out and return_ parameters. To
perform proper data copy, a message data structure is created for each channel.

An additional thread is created for each (non interrupt) asynchronous (ASER)
Operation. These threads are called server_tasks and are used to release
the calling task, as quickly as possible.

The generated code can be expanded either by generic macro commands that can
be customized remotely, or by direct calls to the RTOS library. This choice
must be specified with the first parameter of the pragma target. The second
parameter must be used to specify the directory containing the generic macro
command expansion file taskCom.h, when the first parameter in generic.
Additional information can be specified with the pragma target_param.

These default Real Time code generation rules are only provided as templates.
The code generator has been designed to be customized for any particular set of
alternate rules or RTOS, as easily as possible. Please contact the technical
support to customize the OBCS code generation rules to fit the requirements
of your project.

page 24 - STOOD Coding in C User Manual © TNI Europe - May 2005

2.3.6. Operation code (c)

The operation code section must contain a valid C function definition for each
Operation. This section must not contain the prototype of the function, as it
will be generated automatically from the operation declaration section to avoid
any risk of mismatch, but must include the opening and closing braces.

This code will be used as is for unconstrained Operations. For Constrained
Operations, the contents of this section will be used to fill in the body of the
corresponding OPCS function, whereas the function call will be redirected to
the proper State Transition or Real Time behavioural code.

Note that the argument list in the header of the function definition is generated
by default in a "modern" style, that is it is a copy of the function prototype. To
get this argument list with an "old" style, the pragma not_ANSI must be used.

Example of default generation for a function definition header:
M__T M__O(int x /*in*/, int y /*out*/,
 int z /*in out*/)
{ }

Same example with the pragma not_ANSI:
M__T M__O(x /*in*/,y /*out*/,z /*in out*/);
int x;
int y;
int z;
{ }

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 25

3. C generation options
The code may be generated without setting any pragma. In that case, the
standard code generation rules will be applied. However, it may be necessary to
use some of the available tuning parameters, either to modify the default
generation rules, or to add information that can't be found in the design model.

These options may all be controled from the code generator window, are stored
in a dedicated file, called PRAGMA, for each Component. Pragmas may have
different scopes. Some of them are active for the whole Design, others are only
valid for the selected Component, with sometimes a parameter to limit its
scope to a particular Feature. This scope is specified for each pragma in the
description below, and it is a good pratice to allocate to the Root Component
all the pragmas having a Design wide scope. For the purpose of their
description, the pragmas and have been grouped into five categories:

• The main options, to control the automatic production of the
makefile, and the insertion of comments and round-trip
engineering tags.

• The RTOS options, to specify which Real-Time Operating
System API must be used to support multi-tasking.

• The presentation options, to tune line width, indentation, file
headers, and apply project specific rules.

• The functions options, to give additional details about the way
functions and their parameters must be implemented.

• The others options, that haven't been put in any of the above
categories.

page 26 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.1. main options

3.1.1. PRAGMA main

This pragma must be used to specify the main entry point for the Application.
The parameter operation_name must be set to the name of an existing
Operation provided by the Root Component of the Application.

scope:
Its effect is global to the Design, but it must be set in the Root Component
only.

example:
If root is the Root Component, providing an operation named start, and
the pragma main has been set as follow:
main (operation_name => start)
then the following code will de generated inside the file root.c:
/* ---------- include provided------------------ */
#include "root.h"
/* ---------- main entry point: ---------------- */
int main(int argc, char *argv[])
{
 return root__start(argc, &argv[0]);
}

restriction:
As the .c filename for the Root Component is used to implement the main
function, it is not currently possible to apply the pragma main for a
Terminal Root Component.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 27

3.1.2. PRAGMA cc

This pragma may be used to specify the name of the C compiler that must be
used when executing the generated makefile.

scope:
Its scope is the whole Design. It is recommended to set it for the Root
Component only.

example:
If the pragma cc has been set as follow:
cc (compiler => gcc)
then the generated makefile will contain the line shown below:

CC=gcc

note:
It may be necessary to temporarily modify the execution path to let Stood
launch the compiler after having generated the C source code. The initialization
file (stood.ini for Windows and .stoodrc for Unix) allows the
environment variable C_PATH to be set for that purpose. For Stood to be able
to launch the specified compiler, this variable must contain its directory
pathname. This is useful only if the compiler is not reachable with the default
execution path.

page 28 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.1.3. PRAGMA cflags

This pragma may be used to specify C compiler options that must be used
when executing the makefile.

scope:
Its scope is the whole Design. It is recommended to set it for the Root
Component only.

example:
If the pragma cflags has been set as follow:
cflags (flags => -c)
then the generated makefile will contain the line shown below:

CFLAGS=-c

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 29

3.1.4. PRAGMA ldflags

This pragma may be used to specify C linker options that must be used when
executing the makefile.

scope:
Its scope is the whole Design. It is recommended to set it for the Root
Component only.

example:
If the pragma ldflags has been set as follow:
ldflags (flags => -L/usr/dt/lib)
then the generated makefile will contain the line shown below:

LDFLAGS=-L/usr/dt/lib

page 30 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.1.5. PRAGMA comment

This pragma can be used to automatically insert comments inside the C source
files. The comment lines are copied from the relevant textual descriptions that
can be found in the detailed design information structure (ODS). In addition,
when this pragma is set, file headers such as shown below are generated:
/***/
/* PROJECT : Demonstration */
/* COMPANY : TNI */
/* FILENAME : root.h */
/* DESIGN NAME : root */
/* MODULE NAME : root */
/* DESCRIPTION : */
/* contents of the section : */
/* Statement of the problem */
/* FUNCTION NAMES : */
/* main__start */
/* main__stop */
/***/
/* Creation date (MM/JJ/AA): 01/23/2003 */
/***/
The Project and Company variables can be customized in the initialization
file (stood.ini on Windows and .stoodrc on Unix).

scope:
Its scope is the whole Design. It is recommended to set it for the Root
Component only.

note:
When this pragma is set and some textual descriptions are missing, then the file
extraction messages will contain warnings.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 31

3.1.6. PRAGMA reverse

This pragma must be used to insert round-trip engineering tags within the
generated source code. The users will be allowed to perform any change
between the begin and end tags, but not anywhere else. The code changes will
then be introduced into the design model, thanks to the C reversor function

The first parameter of this pragma has an integer type and takes the value 1.
Other values are reserved for future needs. The second parameter can either take
the value no or contain a string that will be used to decorate the tag.

scope:
Its scope is the whole Design. It is recommended to set it for the Root
Component only.

example:
If the pragma reverse(option => 1,separator => "===") is set, following code
will be produced:
/* ===<begin OpDecl M O> */
void M__O(void)
/* ===<end> */

The user can then change the prototype of this function directly within the C
file, and the corresponding Design data will be updated while using the C
reversor. When a piece of code appears several times, the reverse tags are set
only once (i.e. function prototypes are tagged in the body files only).

restriction:
Allowed changes are only those accepted for the corresponding coding section.
This is especially true for the operation declarations.

page 32 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.1.7. PRAGMA std_file

This pragma must be set on Environment Component, to denote standard
header files. When this pragma is set, the appropriate syntax will be used in the
#include directives that are automatically generated.

scope:
Its scope is the selected Root Component. It is relevant when used as an
Environment Component only.

example:
If the pragma std_file is set for the Environment Component stdlib, then
the following code will be generated in each file requiring it:

#include <stdlib.h>

If the pragma is not set, the corresponding code will be:

#include "stdlib.h"

note:
While creating a local copy of an Environment in the graphic editor, its
pragmas can be imported. If the pragma std_file is set in the referenced
Design, then it wil not be necessary to reset it within each using Design, where
it appears as an Environment.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 33

3.1.8. PRAGMA location

This pragma is used to insert information in the makefile, to provide the
linker with the actual location of required Environment Component.

scope:
Its scope is the selected Root Component. It is relevant when used as an
Environment Component only.

example:
If the pragma location has been set as follow, for the Environment
Component display:

location(where => /home/libs, extension => .o)

then the following line will be automatically included into the generated
makefile:

OBJ=/home/libs/display.o

page 34 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.1.9. PRAGMA except

This pragma can be used not to generate code for the corresponding
Component.

scope:
Its scope is the selected Component only.

note:
Any existing source file attached to the selected list of Components are usually
deleted during the initialization phase of a code generation. In order to avoid
these deletions for the Components for which the pragma except has been set,
the property NoCleanUpFor must be define in the initialization file:

on Windows (stood.ini):
[Languages]
NoCleanUpFor=except

on Unix (.stoodrc):
Languages.NoCleanUpFor:except

This property is set by default, and can be very usefull when source code files
for some Components of the Design are generated by other tools.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 35

3.2. RTOS options

3.2.1. PRAGMA target

If this pragma is not set, no automatic code generation will be done to
implement the Real Time features of the Design (refer to §1 for a description
of the mapping). In order to generate the Real Time code (i.e. processes and
communications) from the architectural Design description, a run-time
executive target must be specified.

The first parameter of this pragma must be used to specify the name of the
run-time executive. Currently, only two targets are supported by the default C
code generator rules: transputer and generic. When transputer is
chosen, direct calls to the C run time library for transputer based targets are
automatically generated. When generic is chosen, calls to a set predefined
macro command are included into the generated code. These macro commands
are expanded in a different way for each native target, within a file named
taskCom.h. Other direct targets can of course be implemented. Please contact
the technical support to submit your requirements

The second parameter specifies the name of the directory containing the
taskCom.h file for the chosen target. The current possible values for this
parameter are: posix, arinc653, rtc and transputer. These macro
command definition files are provided as is, and need to be customized and
validated in the context of the project before any industrial use.

scope:
Its scope is the whole Design. It is recommended to set it for the Root
Component only.

page 36 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.2.2. PRAGMA target_param

This pragma must be used in association with the pragma target, to provide
additional information to generate the Real Time code. The first argument of
this pragma, called param, denotes the name of a key, and the second
argument, called value, contains the key value. This is a very flexible way to
introduce alternate code generation patterns.

As an example, here are the keys and their possible values that have been
defined for the target transputer. Similar pairs of key-value could be defined
for other targets.

target_param(param=>priority,value=high|low)
This pragma specifies if the corresponding thread must be run with a high
(ProcRunHigh), or a low priority (ProcRunLow). If this pragma is not
used, the default function (ProcRun) will be used.

target_param(param=>wsize,value=>size)
target_param(param=>stack_address,value=>address)
These two pragmas may be used to finely control the thread stack allocation,
by providing a value to its size (in bytes, or 0 for the default value), and relative
address.

scope:
These pragma must be attached to an Active Component.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 37

3.2.3. PRAGMA LICE

This pragma must be used to let the code generator produce appropriate
information at run time for the LICE tools. LICE is a Real-Time monitoring
system that has been developed by the French Space Agency (CNES). The aim
is to trace the main behavioural events of the program such as stopping threads,
calling and returning from communication channels. It produces an output file
containing the events encoding. This filename must be specified as a parameter,
and the default value user will redirect the output to the console. Calls to the
predefined function liceTrace are also inserted within the executable code.

scope:
Its scope is the whole Design. It is recommended to set it for the Root
Component only.

example of LICE event encoding generated by Stood:
=== begin LICE encoding
0x41 call HSER op.
0x42 exit HSER op.
0x43 call LSER op.
0x44 exit LSER op.
0x45 call ASER op.
0x46 exit ASER op.
0x47 call stop task.
0x48 exit stop task.

0x00000101 transputer.run
0x00000201 client.run
0x00000202 client.notify
0x00000301 cyclic.start
0x00000302 cyclic.timer
0x00000303 cyclic.stop
0x00000401 shared.read
0x00000402 shared.write
=== end LICE encoding

page 38 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.3. presentation options

3.3.1. PRAGMA insert_pseudo

When used, this pragma will let the code generator insert the contents of the
pseudo code section of an Operation or the Obcs, as a comment in the C
source files.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 39

3.3.2. PRAGMA presentation

The pragma presentation can be used to control the generated source files
layout. Three options are currently supported, and the aim is of course to add
others in the future to cope with specific corporate or project recommendations.
Note that this pragma may be set several times with a different option.

presentation(option=>no_line_feed)
If this pragma is set, then compact code will be generated, that is decorative
line feeds will be removed.

presentation(option=>indent_param)
If this pragma is set, then each argument of function declarations and
definitions will be generated on a separate line.

presentation(option=>microsat)
This pragma option is an example of what can be done to customize the code
generator for a particular project. When it is set, it impacts various code
generation rules to comply with the coding requirements of the project micro-
satellite developed by the French Space Agency (CNES). Please contact the
technical support to submit similar requirements that would be applicable for
your project.

scope:
The scope of these pragmas is the whole Design. It is recommended to set it
for the Root Component only.

page 40 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.3.3. PRAGMA line_width

This pragma may be used to specify the maximum length of the lines that are
produced by the code generator. The default value is 80.
Note that pieces of code that have been entered manually within the coding
sections of the design data structure wont be affected by the value of this
pragma. It is the responsability of the user to ajust the length of the hand
written source code lines.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 41

3.3.4. PRAGMA indent_width

This pragma may be used to specify the number of space characters that are
used for one code indentation. The default value is 2.

Note that pieces of code that have been entered manually within the coding
sections of the design data structure wont be affected by the value of this
pragma. It is the responsability of the user to ajust the width of the indentation
within hand written source code lines.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

page 42 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.3.5. PRAGMA substitute_header

Headers may be inserted at the beginning of each source file that is generated
(refer to §2.1). This pragma may be used to substitute a header by the contents
of one of the informal textual description sections of the current Component.

The logical name of the header to be substituted must be specified as the first
argument of this pragma, and the logical name of the substitute description
section must be specified as the second argument. Logical names are those
defined in the DataBase configuration file, and can be shown with the
definition contextual menu in the list of Properties.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

restriction:
This pragma has no effect if the pragma append_header is already used.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 43

3.3.6. PRAGMA append_header

Headers may be inserted at the beginning of each source file that is generated
(refer to §2.1). This pragma may be used to append the contents of one of the
informal textual description sections of the current Component, to the
specified header.

The logical name of the header to be extended must be specified as the first
argument of this pragma, and the logical name of the appended description
section must be specified as the second argument. Logical names are those
defined in the DataBase configuration file, and can be shown with the
definition contextual menu in the list of Properties.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

page 44 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.3.7. PRAGMA tabulation

This pragma can be used to control the width of the tabutation characters that
are found inside the textual information files and that are inserted as comments
in the generated source files (refer to §3.1.5). The number of space characters to
be used in replacement of each tab character is specified in argument. Default
value is 4.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 45

3.4. function options

3.4.1. PRAGMA inline

When this pragma is set, the body of the specified function is included inside
the header file of the Component, instead of including it inside the source file.
In addition, the value passed as parameter to the pragma inline_def (refer to
§3.5.4) is inserted at the beginning of the function definition.

scope:
The scope of this pragma is the specified Operation of the selected
Component. The pragma must be duplicated for each function to be set inline.

restriction:
If the pragma inline_def is not set, then the pragma inline has no effect.

example:
Assuming that the following pragmas have been set for the Component
account:
inline_def(keyword=>__inline__)
inline(operation_name=>read)
Then, the file account.h will contain the following code:
...
__inline__ int account__read(void)
{
 ...
 return value;
}
...

page 46 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.4.2. PRAGMA pointer

If the pragma pointer is set for a given op_parameter_mode, (refer to
§2.2.1), then the type of the all parameters of this mode will be interpreted as
pointers. Possible values for the unique parameter of this pragma are: in_mode;
out_mode and inout_mode.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

example:
Given the following Operation declaration in the Component buffer:
get(element : in int; bigvalue : out buffer.bigstruct)
And assuming that the following pragmas have been set:
pointer(parameter_mode => out_mode)
presentation(option=>indent_param)
Then the corresponding generated code for this function prototype will be:
buffer__get(
 int element /*in*/,
 buffer__bigstruct *bigvalue /*out*/);

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 47

3.4.3. PRAGMA return_const

If the pragma return_const is used for an Operation, then the return type
reference of the corresponding generated C prototype will be preceded by the
keyword const.

scope:
The scope of this pragma is the specified Operation of the selected
Component. The pragma must be duplicated for each function to be set inline.

example:
Given the following Operation declaration in the Component buffer:
get_size return int;
And assuming that the following pragma has been set:
return_const(operation_name => buffer_size)
Then the corresponding generated code for this function prototype will be:
const int buffer__get_size(void);

page 48 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.4.4. PRAGMA storage

This pragma is an example of what kind of precise customization of the code
generation rules can be done to cope with specific compilation contexts. This
pragma introduces conditional compilation directives associated to memory
space allocation qualifiers.

The first parameter denotes the function which the pragma applies to. The
second parameter carries the symbol that is used for testing the condition, and
the third parameter must be a valid pointer memory space qualifier.

scope:
The scope of this pragma is the specified Operation of the selected
Component. The pragma must be duplicated for each function to be set inline.

example:
Given the following Operation declaration in the Component sensor:
get_data return sensor__signal*;
And assuming that the following pragma has been set:
storage(operation_name => get_data,

compiler => __GNUC__, pointer_storage => dm)
Then the corresponding generated code for this function prototype will be:
#ifdef __GNUC__
sensor__signal dm *sensor__get_data(void);
#else
sensor__signal *sensor__get_data(void);
#endif

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 49

3.4.5. PRAGMA incomplete_prototypes

If the pragma incomplete_prototypes is set, then all the generated C prototypes
will only list the parameter types, without showing the parameter names.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

example:
Given the following Operation declaration in the Component buffer:
get(element : in int; value : out buffer.smallstruct)
And assuming that the pragma incomplete_prototypes has been set,
then the corresponding generated code for this function prototype will be:
buffer__get(int /*in*/,buffer__smallstruct /*out*/);

page 50 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.4.6. PRAGMA not_ANSI

When the pragma not_ANSI is set, C function declarations and definitions are
generated using the "old" style. No prototype is then produced for the function
declaration, and the parameter types are specified on separated lines. If the
pragma is not set, prototypes and "modern" style will be used.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

example:
Given the following Operation declaration in the Component buffer:
get(element : in int; value : out buffer.smallstruct)
And assuming that the pragma not_ANSI has been set, then the corresponding
generated code for this function declaration and definition will be:
buffer__get();
buffer get(element /*in*/, value /*out*/)
int element;
smallstruct value;
{ }

restriction:
This pragma has no effect on the code that is automatically generated to
support Real-Time features, especially when the pragma target has been set.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 51

3.5. other options

3.5.1. PRAGMA no_command_line

When the pragma main is used (refer to §3.1.1), one of the Operations that are
provided by the Root Component acts as the main function of the program.
Standard behaviour is then to replace its existing parameter list, if any, by the
standard C command line parameters. If the pragma no_command_line has
been set, the existing parameter list, if any, is replaced by void.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

example:
If root is the Root Component, providing an operation named start, and
the following pragmas have been set:
main (operation_name => start)
no_command_line
then the following code will de generated inside the file root.c:
#include root.h
/* ---------- main entry point: ---------------- */
int main(void)
{
 root__start();
 return 0;
}

page 52 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.5.2. PRAGMA no_define

#define preprocessor directives are used by the code generator to manage the
HOOD Implemented_By or UML Delegate relationships that are defined
between the different levels in the hierarchy of Components. In some
situations, it is not appropriate to do so. If the pragma no_define is set, then
alternate code generation rules will be used for Provided Constants, Data(*) and
Operations.

The effect of this pragma is to create a source file for those Non Terminal
Components that provide at least a Constant, Data(*) or Operation. This
source file will contain the appropriate implementation code.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

restriction:
Use of this pragma doesn't eliminate all the #define directives. It just
manages the code generation rules for the Implemented_By links.
If some Constants have been defined explicitely using a #define directive,
then this pragma won't have any effect on them.

note:
(*) Provided Data are not recommended by the HOOD design rules. However,
they may be supported by Stood and the C code generator provided that the
appropriate custimization has been performed.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 53

3.5.3. PRAGMA full_file_names

This pragma can be used to control the way filenames are inserted within the
#include directives and the makefile. Default behaviour is to insert short
filenames. If the pragma full_path_name is set, then the full pathname will be
used: basename+filename.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

page 54 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.5.4. PRAGMA inline_def

This pragma can be set to specify which keyword must be used to manage the
inline feature. As it is not supported by the ANSI standard, the availability of
this feature and the associated keyword may vary depending on the compiling
environment.

The parameter of this pragma carries the keyword that will be used for each
Operation for which the pragma inline has been set (refer to §3.4.1). If the
pragma inline is used and the pragma inline_def is not set, then no keyword
will be inserted, which can lead to compilation errors.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 55

3.5.5. PRAGMA static

This pragma must be used to conditionally apply an internal linkage to all the
Internal Features. The first parameter carries the keyword static or the
name of a preprocessor macro (typically: STATIC). The second parameter
contains the condition for the definition of this preprocessor macro.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

example:
Assuming that with no pragma static set, the following code is generated in the
source file of the Component buffer:
int buffer__get_size(void);
It will become as follow if pragma static(keyword=>static,condition=>no) is
set:
static int buffer__get_size(void);
And finally, if the pragma static(keyword=>STATIC,condition=>TEST), the
generated code will be:
#ifndef TEST
 #define STATIC static
#else
 #define STATIC
#endif
...
static int buffer__get_size(void);

page 56 - STOOD Coding in C User Manual © TNI Europe - May 2005

3.5.6. PRAGMA prefix_all

This pragma may be used to force the use of the "dot" notation for Internal
Operations.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

example:
Assuming that with no pragma prefix_all set, the following code is generated in
the source file of the Component calculator, for the Internal Operation
process_data:
int process_data(sensor__T_signal value);
It will become as follow if pragma prefix_all is set:
int calculator__process_data(sensor__T_signal value);

restriction:
This pragma has no effect if the pragma prefix_none is set.

note:
Removal of the "dot" notation for all the other Internal Features can be
performed directly within the corresponding coding sections of the design data
structure.

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 57

3.5.7. PRAGMA prefix_none

This pragma can be used to prevent the code generator to insert any "dot"
notation within Provided Features declarations and definitions. Doing so, the
whole program will use the same name space.

scope:
The scope of this pragma is the whole Design. It is recommended to set it for
the Root Component only.

note:
This pragma has no effect on the code that is entered manually within the
coding sections of the design data structure. If references to remote Features
uses the "dot" notation, whereas the pragma prefix_none is set, this will lead to
linkage errors.

page 58 - STOOD Coding in C User Manual © TNI Europe - May 2005

STOOD Coding in C User Manual © TNI Europe - May 2005 - page 59

TNI Europe
Triad House

Mountbatten Court
Worall Street

Congleton
Cheshire

CW12 1AG
UK

+44 1260 291 449

Ellidiss Technologies
Technopôle Brest-Iroise
115 rue Claude Chappe

29280 Plouzané
Brittany
France

+33 298 451 870

www.tni-world.com
stood@tni-world.com

