
Stood

AADL Import/Export
User Manual

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 1

Pierre Dissaux

page 2 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

Contents

1. AADL mapping 7
1.1. AADL components 7
1.2. AADL features 11
1.3. AADL connections 12
1.4. AADL properties 13
1.5. AADL modes 14

2. AADL export 15
2.1. Set the default language 15
2.2. Load a design 17
2.3. Create a new design 18
2.3.1. Components and packages 18
2.3.1.1. Systems 18
2.3.1.2. Packages 19
2.3.1.3. Processes 21
2.3.1.4. Threads 23
2.3.1.5. Thread groups 27
2.3.1.6. Data 29
2.3.1.7. Subprograms as components 36
2.3.1.8. Execution platform components 38
2.3.2. Features 39
2.3.2.1. Ports 39
2.3.2.2. Port groups 43
2.3.2.3. Subprograms as features 43
2.3.2.4. Subprogram parameters 45
2.3.2.5. Subcomponent access 46

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 3

2.3.3. Connections 48
2.3.3.1. Between sibling components 48
2.3.3.2. Up and down the containment hierarchy 51
2.3.4. Operational modes 53
2.3.5. Properties 55
2.4. Set generation options 57
2.4.1. Pragma os 58
2.4.2. Pragma main 59
2.4.3. Pragma compact 60
2.4.4. Pragma more_packages 61
2.4.5. Pragma renames 64
2.4.6. Pragma behavior 66
2.4.7. Pragma reverse 68
2.4.8. Pragma type_name 69
2.4.9. Pragma implementation_name 70
2.5. Generate and view AADL code 71

3. AADL import 73

page 4 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 5

The Architecture Analysis and Design Language (AADL) standards document
was prepared by the SAE AS-2C Architecture Description Language
Subcommittee, Embedded Computing Systems Committee, Aerospace Avionics
Systems Division. The AADL standard is based on MetaH, an architecture
description language developed at Honeywell Laboratories under the
sponsorship of the US Defense Advanced Research Projects Agency (DARPA)
and US Army Aviation and Missile Command (AMCOM). Release 1.0 of the
AADL standard (SAE AS5506) has been issued in November 2004.

The AADL is a language used to describe the software and hardware
Components of a system and the interfaces between those Components. The
language can describe functional interfaces to Components, such as data inputs
and outputs, and non-functional aspects of Components, such as timing. The
language can describe how Components are combined, such as how data inputs
and outputs are connected or how software Components are allocated to
hardware Components. More detailed information about this language may be
found at: www.aadl.info.

Stood is a software design tool that is used for the same kinds of mission
critical systems as those for which the AADL has been developed. This manual
describes the import and export features that have been included into Stood, in
order to let software designers benefit from the AADL. Some of the most
important advantages of Stood is that it offers a very good support of the
modeling process, and brings a large set of development features that have
already been in use on many large scale industrial projects.

With Stood it is thus possible to import specifications written in AADL to set
up a preliminary software architecture, or to generate standard AADL
descriptors of existing software Components for future reuse.

page 6 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

1. AADL mapping
Unlike for some other toolsets that are fully dedicated to the AADL, the
support of the language in Stood is based on a point to point mapping between
the Stood internal meta-model, which is a implementation of the HOOD, HRT-
HOOD and UML 2.0 standards, and the closest definitions in the AADL
standard. Please, refer to the corresponding AADL, HOOD and UML 2.0
standards definition for a more complete and precise description of these
concepts. The support of the AADL into Stood thus mainly consists in a set of
transformation rules, that are packaged inside external plugins for better
flexibility. This chapter presents this mapping for AADL Packages,
Components, Features, Connections, Properties, and other concepts.
Variants in this mapping may be defined to comply with specific requirements.
For instance the default transformation rules that have been defined for the
import and export features may differ in a few points to best fit the actual need
of each use case.

1.1. AADL components

A HOOD System_Configuration represents a software project. It refers to
one or several cooperative programs (Design), libraries and software interface
for hardware (Environment), and generic components (Generic). Each Design
becomes an Environment within the scope of another Design of the same
System_Configuration. This is the logical view of the project. In addition, it
may contain one ore several Virtual_Nodes describing a distributed architecture
of processors and an allocation table for the elements of the logical view. This is
the physical view of the project which is only needed for distributed systems.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 7

The System_Configuration is mapped to an AADL System instance, when the
main Design aims to the production of an executable program, and thus
represents a Process. Environments may represent other collaborative
Processes within the same System, or Packages if they only aim to the
production of libraries of types or classes. Further investigations will be
performed to extend this mapping in order to support some other kinds of
Environments as Devices, Generics as Packages and Virtual_Nodes as
Processors.

A HOOD Design is the root of a hierarchy of Modules. Each Module is a well
identified subset of the Design that is built in an iterative way, following a top-
down decomposition process. This process must comply with the information
hiding, low-coupling and high consistency rules promoted by the HOOD
methodology.

The most natural mapping for a HOOD Module is an AADL software
Component, although it will represent either a Component Type and
Implementation only, if defined within a Package, or a Component Type,
Implementation and a Subcomponent, if defined within a Process.

A HOOD Module may be Passive or Active. If it is Active, it contains its own
thread of control. Two specialized kinds of Active Modules have been defined
by HRT-HOOD to support Hard Real-Time architectures: Cyclic Objects to
represent periodic activity, and Sporadic Objects that are triggered by an
applicative event. A specialized kind of Passive Module has been defined to
encapsulate shared data and their appropriate access procedures, they are called
Protected Objects. There are other kinds of Modules like Classes, that
represent object oriented data structures associated with their member
functions, Op_Controls, that represent purely functional entities, and
Instances_Of generic, that represent parameterized entities.

page 8 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

The table below summarizes the mapping between HOOD Module kinds and
AADL Component categories:

AADL STOOD
System instance System_Configuration
Processor Virtual_Node
Device Environment
Process Design
Package Class or Environment
Thread (aperiodic) Active Terminal
Thread (periodic) Cyclic Terminal
Thread (sporadic) Sporadic Terminal
Thread Group Active Non_Terminal
Data Protected or Passive Terminal
Subprogram Op_Control

In HOOD, each Module (including the Design), has an interface and a body.
The interface consists of the Provided_Interface that lists the declaration of
the software elements that are implemented by the Module and made visible to
be used by other Modules, and the Required_Interface that lists the
references to all the remote software elements that are required to implement the
Module. The body is called the Internals of the Module and contains either
child Modules (for a Non_Terminal Module) or a list of declaration of private
software elements and all the implementation (for a Terminal Module).
Mapping with the corresponding AADL concepts is shown in the table below:

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 9

AADL STOOD
Component Type Module Interfaces
 Features Provided_Interface
 Required Subcomponents Required_Interface
Component Implementation Module Internals
 Subcomponents Child Modules
 Calls OPeration Control Structure
Extends Class Inheritance

Unlike the AADL, HOOD only distinguishes between Modules type and
Modules instances in two particular cases only, the general case being that a
Module is handled as an Object, that is, the unique instance of an anonymous
type. The first particular case is when the Module type is described by a Class
(like in UML), but then, instances of this Class (which are in effect only
instances of the main data Type provided by the Class) becomes Data,
Constants, etc... embedded somewhere inside another Module. The other
particular case is when the Module type is described by a Generic, then,
instances of this Generic (which are in effect only instances of the formal
parameters) become other Modules called Instance_Of. HOOD also supports
Generic Classes (similar to C++ templates) that need to be instanciated twice.
The other extension mecanism offered by HOOD is the Class Inheritance.

Practically, when a HOOD Module is defined as a child of a Passive parent,
then it will be considered as being abstract, and it will be translated into a
Component Type and Implementation. On the contrary, if it is a child of an
Active parent, it will be translated into a Subcomponent and the corresponding
Component Type and Implementation. Subcomponents which Type is
defined within a remote Package should be modeled in HOOD by an
Instance_Of a Generic Module. However this mapping is not implemented
yet. Component Type Extension is currently available for Data Components
only, and represented in HOOD by the Class Inheritance relationship.

page 10 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

1.2. AADL features

A HOOD Module may contain references and declarations to, and/or
implementation of, software elements. These elements are: Operations,
Exceptions, (data) Types and Constants in a Provided_Interface, and
Operations, (data) Types, Constants and Data in the Internals. Operations
declaration may specify Parameters and Types declaration may specify
Attributes. Constants, Data, Parameters and Attributes are instances of a
data Type. Operations may raise and handle Exceptions. As Provided Data
are not allowed in HOOD, data flows can only be propagated between two
Modules along client/server functional calls.

AADL STOOD
Data Port "getter" or "setter" Operation
Event Port async. Oper. or Exception
Event Data Port async. Oper. with parameters
Server Subprogram synchronous Opereration
Data Subprogram class member Operation
Data Access Required or Used Object

By default, the execution request for an Operation is said to be unconstrained.
However, it is possible to specify one or several Operation Constraints
(trigger events) to describe more precisely the interaction between a client and a
server. Protocol Constraints are used to specify the synchronization protocol
between two concurrent threads of execution. These constraints are: ASER
(asynchronous), LSER (synchronous, acknowledge), HSER (synchronous,
wait-reply). The additional constraint TO specifies a time-out for ASER and
LSER, and hardware interrupts are identified by the additionnal constraint
BY_IT attached to an ASER constraint. State Constraints specify the
receptivity of a service regarding the current State of the server and
Concurrency Constraints can be used to manage mutual exclusion.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 11

1.3. AADL connections

At architectural level, the interactions between HOOD Modules are described
by Use relationships on both functional and structural views. A functional Use
relationship defines a client/server interaction between Operations of the two
Modules. They are the support for control flows, DataFlows (related to the
Parameters of the called Operations) and Exception_Flows (related to the
Exceptions that may be raised by the called Operations). A structural
relationship defines a Type dependency (instanciation, aggregation and
inheritance for Classes) between the two Modules. They are the support for
the definition of Attributes (for any structured Type) and super-Classes (for
Classes).

In HOOD, Non Terminal Modules are empty shells. That means that any
element (Type, Constant, Operation or Exception) declared in the
Provided_Interface of a Non Terminal Module must be Implemented_By a
element of the same kind in the Provided_Interface of one of the child
Modules.

AADL STOOD
between sibling Components Op_Use relationship
Component to Subcomponent Implemented_By relationship
dot notation for Data Types Type_Use relationship

page 12 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

1.4. AADL properties

HOOD offers a standard information structure for each Module. This structure
is called the ODS (Object Description Skeleton) and provides low level details
about the Module and its elements. The ODS contains:

• Textual sections to justify the design choices and the
requirements traceability

• Real-Time attributes (period, priority, deadline, worst case
execution time, etc...)

• The list of required remote elements (Required_Interface)
• Textual comment for each Operation, Type, etc...
• Source code for the declaration of each Type, Constant, or Data

element
• Source code for the OPCS (procedural code of an Operation) and

the OBCS (behavioral code of a Module)
• etc...

Many of these elements can represent AADL Properties. Currently, just a few
of them are supported by Stood:

AADL STOOD
Source_Text naming rules
Source_Language pragma Target_Language
Source_Name naming rules
Dispatch_Protocol kind of Module (cyclic, ...)
Period HRT Attribute: Period
Compute_Deadline HRT Attribute: WCET
Deadline HRT Attribute: Deadline
Compute_Entrypoint naming rules

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 13

1.5. AADL modes

The Internals of a Terminal Module contain the procedural code associated
to each Provided or Internal Operation, within a structure called the OPCS
(OPeration Control Structure). If there is at least one Operation that has a
Protocol or State Constraint, the Internals of a Terminal Module will also
contain the behavioral code associated to the corresponding thread and/or states-
transitions model, within another structure called OBCS (OBject Control
Structure).

Internal Data may be shared by all the elements contained by the Internals of
the Module. They can be used as State variables for the states-transitions
model implemented in the OBCS of a Terminal Module. The only states that
need to be specified in a HOOD states-transitions model are those defining
areas of receptivity for the provided Operations. The execution request for a
provided Operation becomes an event that triggers a transition (in the OBCS),
before executing the appropriate code (in the OPCS). In HOOD, a states-
transitions model can also be used to specify the execution modes for a whole
Design. In that case, all the real-time attributes must have a known value for
each mode.

AADL STOOD
Mode State at Root level
Mode Mode transition Transition at Root level

page 14 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2. AADL export
The process to export an AADL specification from an existing HOOD Design
is similar to a target language code generation. This process consists in the
following steps:

• Set AADL as the default language
• Load an existing Design, or create a new one.
• Open the AADL extractor window.
• Set AADL code generation options.
• Launch the generation, and view the generated code.

2.1. Set the default language

Stood is a muti-language modeling tool. It is thus possible to perform detailed
design and coding activities for several target languages concurrently. Dedicated
coding sections are available for that purpose for each Component design
framework (ODS). In the case of the AADL, there are no dedicated coding
sections, but pseudo code sections can be used if required.

However, there is generally one main target and it is possible to configure the
tool in such a way that the corresponding functions are selected by default. For
instance, open the right code generator while selecting the code tab.

There are two ways to select the default target language. First way is at a tool
configuration level, by editing the initialization file that is loaded each time
Stood is launched. The following lines show the properties that must be set for
Windows (bin.w32\stood.ini) and Unix (bin.*/.stoodrc).

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 15

[General]
DefaultLanguage=aadl

General.DefaultLanguage:aadl

The second way consists in changing the main target language for the current
Design. This can be done from the Stood menus, as shown below. This option
will then be stored and saved at the same time as the Design.

page 16 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.2. Load a design

It is always necessary to open a System before loading a Design. A given
Design may however be loaded from several Systems. Use the File menu to
create a new System or open an existing one. The list of Designs that are
available for the System is then updated and it becomes possible to load one or
several of them.

When just selected (single mouse click on the Design name), the Design is
loaded but no change can be made (read-only mode). To enable changes, the
Design must be locked by yourself (read-write mode). This can be done either
by a double mouse click on the Design name, or by using the Design/lock
Design menu. In that case, a green locker can be seen at the left of the Design
name.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 17

2.3. Create a new design

This section explains how to create most of the AADL constructs from the
Stood graphical user interface.

2.3.1. Components and packages

2.3.1.1. Systems

Any modeling activity must be done within a System. Just after having
launched Stood or closed the currently opened System, a new one can be
created from the File menu.

There is no direct AADL code generation for a System. The corresponding
AADL System will be generated on top of a Process while generating code for a
Design.

page 18 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.1.2. Packages

A new Design will be translated into a Package if it is Passive and if no
pragma main has been defined before generating the code. A Package
represents a library of reusable Components. Unlike within a Process, these
Components are not instanciated.

If no Component has been defined inside the Package, then a dummy Data
Component Type will be generated to comply with the AADL syntax:

PACKAGE new_package
PUBLIC

 DATA void
 END void;

END new_package;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 19

In addition, if Passive Objects are created inside this Design, and are not
empty, they will be translated into AADL sub Packages.

From the Stood model shown above, the corresponding AADL code will be
generated as follow if the pragma compact has been set:

PACKAGE new_package
PUBLIC

 DATA void
 END void;

END new_package;

PACKAGE new_package::new_subpackage
PUBLIC

 DATA void
 END void;

END new_package::new_subpackage;

page 20 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.1.3. Processes

A new Design will be translated into a Process if it has been set to Active or if
a pragma main has been defined for it.

To change the Passive/Active attribute of a Component, use the
Component/Change component into menu:

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 21

The AADL code that is generated for an empty Process is as follow:

SYSTEM new_system
END new_system;

SYSTEM IMPLEMENTATION new_system.others
SUBCOMPONENTS
 new_process : PROCESS new_process;
END new_system.others;

PROCESS new_process
END new_process;

If a pragma main has been defined, where the event parameter must refer to an
existing in event port of the Process,

PRAGMA main
(event => --|start|--)

then the generated AADL code is modified as follow:

SYSTEM new_system
FEATURES
 start : IN EVENT PORT;
END new_system;

SYSTEM IMPLEMENTATION new_system.others
SUBCOMPONENTS
 new_process : PROCESS new_process;
CONNECTIONS
 EVENT PORT start -> new_process.start;
END new_system.others;

page 22 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.1.4. Threads

An Active Object will be translated into a Thread Component Type and
Implementation, and a Subcomponent if it is located within a Process. It will
be translated into a Component Type and Implementation only if it is created
within a Package.

To create a new Thread, use the Component/New component menu and select
either object (for an aperiodic Thread), cyclic object (for a periodic Thread) or
sporadic object (for a sporadic Thread). If the container is Active, then the new
Object will be created Active by default, else it is always possible to let it
become Active, thanks to the Change component into menu.

The following diagram can then be displayed in the editing area. The HOOD
view of the graphical architecture is shown here because it offers more details,
but the corresponding UML representation can be obtained at any time just by
switching the HOOD/UML radio button.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 23

The generated AADL code for this architecture will be:

SYSTEM new_system
END new_system;

SYSTEM IMPLEMENTATION new_system.others
SUBCOMPONENTS
 new_process : PROCESS new_process;
END new_system.others;

PROCESS new_process
END new_process;

PROCESS IMPLEMENTATION new_process.others
SUBCOMPONENTS
 new_thread : THREAD new_thread;
END new_process.others;

THREAD new_thread
END new_thread;

However, it is possible to get a more precise AADL code, using the predefined
HOOD patterns:

page 24 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

If a HSER or LSER Constrained Operation is defined in the interface of an
Active Terminal Object, then a Server Subprogram will be created for the
corresponding AADL Thread, and the Property Dispatch_Protocol =>
aperiodic will be set.

THREAD new_thread
FEATURES
 new_event : SERVER SUBPROGRAM new_event
 { Compute_Entrypoint => new_event; };
PROPERTIES
 Dispatch_Protocol => aperiodic;
END new_thread;

If an ASER Constrained Operation is defined in the interface of an Active
Terminal Object, then an Event Port will be created for the corresponding
AADL Thread, and the Property Dispatch_Protocol => sporadic
will be set.

THREAD new_thread
FEATURES
 new_event : IN EVENT PORT;
PROPERTIES
 Dispatch_Protocol => sporadic;
END new_thread;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 25

If a Cyclic Object is created, then an Internal Operation called thread is
automatically defined, and the Property Dispatch_Protocol => cyclic
will be set for the corresponding AADL Thread.

THREAD new_thread
PROPERTIES
 Dispatch_Protocol => periodic;
 Compute_Entrypoint => thread;
END new_thread;

If a Sporadic Object is created, then an Internal Operation called thread
and a Provided ASER Constrained Operation called start are automatically
defined, and the Property Dispatch_Protocol => sporadic will be set
for the corresponding AADL Thread.

THREAD new_thread
FEATURES
 start : IN EVENT PORT;
PROPERTIES
 Dispatch_Protocol => sporadic;
 Compute_Entrypoint => thread;
END new_thread;

page 26 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.1.5. Thread groups

Thread Groups can be used to introduce intermediate levels of hierarchy in the
architecture between a Process and the executing Threads. As it has been
shown, a Process is mapped to a Root Object in the Stood Component
hierarchy, whereas Threads are mapped to Terminal Active, Cyclic or
Sporadic Objects. If Non Terminal Active Objects are defined, then they
will be translated into Thread Groups in the AADL generated code.

A Thread Group must represent a logical subset of the real time software
architecture. In compliancy with the HOOD modeling rules, a Non Terminal
Object must encompass a set of subcomponents which are highly coupled,
whereas external dependencies are minimized. For instance, a Thread Goup can
be created to isolate a set of Threads communicating with a same Protected
Object.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 27

The corresponding generated AADL code will be as follow:

PROCESS new_process
FEATURES
 start : IN EVENT PORT;
END new_process;

PROCESS IMPLEMENTATION new_process.others
SUBCOMPONENTS
 new_thread_group : THREAD GROUP new_thread_group;
CONNECTIONS
 EVENT PORT start -> new_thread_group.start;
END new_process.others;

THREAD GROUP new_thread_group
FEATURES
 start : IN EVENT PORT;
END new_thread_group;

THREAD GROUP IMPLEMENTATION new_thread_group.others
SUBCOMPONENTS
 new_data : DATA new_data;
 new_thread1 : THREAD new_thread1;
 new_thread2 : THREAD new_thread2;
CONNECTIONS
 EVENT PORT start -> new_thread2.start;
 DATA ACCESS new_data -> new_thread1.new_data;
 DATA ACCESS new_data -> new_thread2.new_data;
END new_thread_group.others;

page 28 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.1.6. Data

Data Components can be handled by Stood in two different ways, depending
on whether they represent abstract descriptions of data structures (Classes), or
instances of such data structures (Objects). The former will be generated as
Data Components within an AADL Package, wheareas the latter will be used
to describe shared Data Subcomponents inside a Process.

When a Class is created within a Passive Design, it will be translated into a
Data Component definition inside a Package. This Class can contain
Attributes and Operations that will be displayed graphically with the UML or
HOOD notations.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 29

The corresponding generated AADL code is as follow:

PACKAGE new_package
PUBLIC

 DATA new_data
 FEATURES
 new_operation : SUBPROGRAM new_operation;
 END new_data;

 DATA IMPLEMENTATION new_data.others
 SUBCOMPONENTS
 new_attribute : DATA ;
 END new_data.others;

 SUBPROGRAM new_operation
 FEATURES
 me : IN OUT PARAMETER new_data;
 END new_operation;

END new_package;

Note that in case of several Classes defined in the same Package, they will all
be generated as a flat structure within the same namespace. This may be an
issue as several Classes may define Operations with the same name, because
the AADL doesn't support Subprogram overloading. To solve this problem, it
is possible to add the pragma more_packages to tell the code generator to
create a separate sub Package for each Class:

PACKAGE new_package::new_data
...
END new_package::new_data;

page 30 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

Next example shows how a typical UML class diagram, that has been edited in
Stood, can be translated into AADL code. The pragma more_packages has
been used.

PACKAGE graphLib::point2D
PUBLIC

 DATA point2D
 END point2D;

 DATA IMPLEMENTATION point2D.others
 SUBCOMPONENTS
 x : DATA integer;
 y : DATA integer;
 END point2D.others;

END graphLib::point2D;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 31

PACKAGE graphLib::graphics
PUBLIC

 DATA graphics
 FEATURES
 display : SUBPROGRAM display;
 setColor : SUBPROGRAM setColor;
 getColor : SUBPROGRAM getColor;
 END graphics;

 DATA IMPLEMENTATION graphics.others
 SUBCOMPONENTS
 color : DATA T_color;
 END graphics.others;

 SUBPROGRAM display
 FEATURES
 me : IN OUT PARAMETER graphLib::graphics;
 END display;

 SUBPROGRAM setColor
 FEATURES
 me : IN OUT PARAMETER graphLib::graphics;
 END setColor;

 SUBPROGRAM getColor
 FEATURES
 me : IN OUT PARAMETER graphLib::graphics;
 END getColor;

END graphLib::graphics;

page 32 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

PACKAGE graphLib::rectangle
PUBLIC

 DATA rectangle EXTENDS graphLib::graphics
 FEATURES
 perimeter : SUBPROGRAM perimeter;
 area : SUBPROGRAM area;
 END rectangle;

 DATA IMPLEMENTATION rectangle.others
 SUBCOMPONENTS
 topLeft : DATA point2D::point2D;
 bottomRight : DATA point2D::point2D;
 END rectangle.others;

 SUBPROGRAM perimeter
 FEATURES
 me : IN OUT PARAMETER graphLib::rectangle;
 END perimeter;

 SUBPROGRAM area
 FEATURES
 me : IN OUT PARAMETER graphLib::rectangle;
 END area;

END graphLib::rectangle;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 33

On the contrary, when a Passive or Protected Object is created within an
Active Design, it represents a shared Data instance. This Object is supposed to
encompass the actual Internal Data and the corresponding Provided access
Operations.

The corresponding AADL code will be:

THREAD GROUP IMPLEMENTATION new_thread_group.others
SUBCOMPONENTS
 new_data : DATA new_data;
 new_thread1 : THREAD new_thread1;
 new_thread2 : THREAD new_thread2;
CONNECTIONS
 EVENT PORT start -> new_thread2.start;
 DATA ACCESS new_data -> new_thread1.new_data;
 DATA ACCESS new_data -> new_thread2.new_data;
END new_thread_group.others;

page 34 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

DATA new_data
FEATURES
 read : SUBPROGRAM read;
 write : SUBPROGRAM write;
END new_data;

SUBPROGRAM read
END read;

SUBPROGRAM write
END write;

Note that when the Object also provides a Type that can be used to define the
Parameters of the Operations, then the name of the corresponding AADL
Data Component Type will be the name of this Type instead of the name of
the Object.

DATA new_shared
FEATURES
 read : SUBPROGRAM read;
 write : SUBPROGRAM write;
END new_shared;

SUBPROGRAM read
FEATURES
 item : OUT PARAMETER new_shared;
END read;

SUBPROGRAM write
FEATURES
 item : IN PARAMETER new_shared;
END write;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 35

2.3.1.7. Subprograms as components

In most cases, Subprogram Components will be automatically generated from
the corresponding Subprogram Features definition. However it is possible to
explicitely create a Subprogram Component Type by adding an Op_Control
Object inside a Process or a Thread Group.

To create an Op_Control Object, first create a plain Object and then change it
into Op_Control with the relevant menu:

By creating several Op_Controls and Use links between them, it is possible to
describe functional call sequences that will be translated into a corresponding
AADL Call subsection.

page 36 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

PROCESS new_process
FEATURES
 start : SUBPROGRAM new_subprogram1;
END new_process;

SUBPROGRAM new_subprogram1
END new_subprogram1;

SUBPROGRAM IMPLEMENTATION new_subprogram1.others
CALLS {
 new_subprogram2 : SUBPROGRAM new_subprogram2;
 new_subprogram3 : SUBPROGRAM new_subprogram3;
};
END new_subprogram1.others;

SUBPROGRAM new_subprogram2
END new_subprogram2;

SUBPROGRAM new_subprogram3
END new_subprogram3;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 37

2.3.1.8. Execution platform components

There is currently no direct support of the AADL execution platform
Components in Stood. However, the two following particular cases may be
efficiently represented in the context of a pure software development process.

Firstly, the hardware environment of the software being developed with Stood
can be shown as Environment Objects. These Objects are located within the
System, at the same level as the Design, and can be used to represent AADL
Device Components, which interface are required by the Process. However,
there will be no corresponding specific code generation for now.

Secondly, it will be possible in the future to describe the deployment of the
software on a multi-processors architecture thanks to the concept of
Virtual_Nodes that is supported by Stood.

The result of the allocation of Threads onto Processors could be used to
generate the appropriate AADL binding Properties.

page 38 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.2. Features

2.3.2.1. Ports

AADL Ports represent variables that can be used for the transfer of control and
data between Threads. Like all the other AADL Features, they are defined
within the public interface of a Component. This implementation is not
compatible with the strong information hiding principle that is promoted by
Stood. In order to comply with these rules, AADL Ports must be represented
in Stood by an Internal Data item and a Provided getter or setter Operation.
Practically, the only definition of the Operation in the Provided Interface is
sufficient to generate the proper AADL output. To create a new Operation,
first select the target Object in the diagram, and then use the menu Feature/New
Feature/Provided/Operation.

It is then possible to edit the Operation signature within the text area that is
shown below the diagram. Note that an Ada-like syntax is used by Stood to
define Operation signatures:

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 39

To create an In Data Port, specify an In Parameter with the corresponding
data Type, for instance:

new_in_data(port : in port_type);
To create an Out Data Port, specify an Out Parameter with the corresponding
data Type, for instance:

new_out_data(port : out port_type);
To create an In Out Data Port, specify an In Out Parameter with the
corresponding data Type, for instance:

new_in_out_data(port : in out port_type);

The AADL code that is generated by Stood for such a Thread is shown below:

THREAD new_thread
FEATURES
 new_in_data_port : IN DATA PORT port_type;
 new_out_data_port : OUT DATA PORT port_type;
 new_in_out_data_port : IN OUT DATA PORT port_type;
END new_thread;

In order to represent Event or Event Data Ports, it is necessary to specify that
the Operation execution is triggered by an ASER (ASynchronous Execution
Request) event. This can be done inside the operation properties section as
shown below. Note that, as a special case, Out Event Ports are represented in
Stood by Exceptions instead of Operations:

page 40 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

It is of course possible to combine a signature and a trigger to represent Event
Data Ports. The Out Event Port can be created just by inserting an Exception:

operation view exception view

THREAD new_thread
FEATURES
 new_in_event : IN EVENT PORT;
 new_in_event_data_port : IN EVENT DATA PORT

port_type;
 new_out_event_data_port : OUT EVENT DATA PORT

port_type;
 new_in_out_event_data_port : IN OUT EVENT DATA PORT

port_type;
 new_out_event : OUT EVENT PORT;

PROPERTIES
 Dispatch_Protocol => sporadic;
END new_thread;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 41

Note that Stood manages System interrupts as a special case. In fact, the
supported methodology recommends not to propagate IT events along the
composition hierarchy, as opposed to the applicative events. A specific
Operation Constraint (BY_IT) has been defined to denote that the
corresponding event is triggered by a System interrupt. This trigger label must
be associated to a parameter representing the interrupt vector or identifier.

In that case, the AADL code generator will automatically insert all the higher
level Ports and Connections along the containment hierarchy, so that the IT
can be actually seen as being transmitted by an Out Event Port of an execution
platform Component and received by an In Event Port of the Process.

PROCESS new_process
FEATURES
 reset : IN EVENT PORT;
END new_process;

PROCESS IMPLEMENTATION new_process.others
SUBCOMPONENTS
 new_thread : THREAD new_thread;
CONNECTIONS
 EVENT PORT reset -> new_thread.new_it;
END new_process.others;

page 42 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.2.2. Port groups

Port Groups are currently not supported by the AADL code generator of
Stood. However, due to the mapping between Ports and Operations, the
appropriate representation of Port Groups will be Operation Sets that can be
used in Stood to group a set of Operations.

Note that this mapping between Port Groups and Operation Sets is
implemented in the AADL import function of Stood.

2.3.2.3. Subprograms as features

As opposed to Processes, Thread Groups, Threads and Data, Subprograms
cannot be instanciated as Subcomponents within a Component
Implementation. They must be declared as Features in a Component Type.
There are two kinds of Subprogram Features: Data Subprograms that can be
declared in the interface of Data Components and Server Subprograms that
can be declared especially in the interface of Processes, Thread Groups and
Threads.

Operations declared in the interface of a Class or a Passive Terminal Object
or a Protected Object, will be translated into Data Subprogram Features. In
addition, if the specified Subprogram Component Type doesn't exist, it will
be also created.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 43

DATA new_class
FEATURES
 new_method : SUBPROGRAM new_method;
END new_class;

DATA IMPLEMENTATION new_class.others
SUBCOMPONENTS
 new_attribute : DATA ;
END new_class.others;

SUBPROGRAM new_method
FEATURES
 me : IN OUT PARAMETER new_class;
END new_method;

Operations declared in the interface of an Active Object and to which a
Synchronous Execution Request trigger event has been set (HSER or LSER),
will be translated into Server Subprogram Features. In order to specify that
the Subprogram code must be executed instead of the default Thread
execution code, a Compute_Entrypoint Property is automatically added to
the AADL specification. In addition, if the specified Subprogram Component
Type doesn't exist, it will be also created.

page 44 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

THREAD new_thread
FEATURES
 new_server_sp : SERVER SUBPROGRAM new_server_sp

{ Compute_Entrypoint => new_server_sp; };
PROPERTIES
 Dispatch_Protocol => aperiodic;
END new_thread;

SUBPROGRAM new_server_sp
END new_server_sp;

2.3.2.4. Subprogram parameters

In Stood, Operation Parameters must be declared using an Ada like syntax.
This may be done within the operation declaration section:

The corresponding AADL code will be generated as follow:

SUBPROGRAM read_buffer
FEATURES
 item : OUT PARAMETER T_item;
 location : IN PARAMETER T_loc;
END read_buffer;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 45

2.3.2.5. Subcomponent access

The AADL code generator of Stood will produce a Requires Data Access
Feature in a Process, Thread Group, Thread or Subprogram Component to
denote a reference to a remote shared Data Component. Note that Provides
Data Access and Bus Access Features are not currently supported by Stood.
To produce a Requires Data Access Feature, Use dependencies must be
drawn on the diagram, as shown below:

The AADL code that is generated for this set of Components is as follow:

PROCESS new_process
FEATURES
 remote_data : REQUIRES DATA ACCESS remote_data;
END new_process;

THREAD new_thread
FEATURES
 new_data : REQUIRES DATA ACCESS new_data;
 remote_data : REQUIRES DATA ACCESS remote_data;
PROPERTIES
 Dispatch_Protocol => periodic;
END new_thread;

page 46 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

THREAD GROUP new_thread_group
FEATURES
 new_data : REQUIRES DATA ACCESS new_data;
END new_thread_group;

THREAD inner_thread
FEATURES
 new_data : REQUIRES DATA ACCESS new_data;
END inner_thread;

SUBPROGRAM new_subprogram
FEATURES
 new_data : REQUIRES DATA ACCESS new_data;
END new_subprogram;

DATA new_data
END new_data;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 47

2.3.3. Connections

2.3.3.1. Between sibling components

AADL Connections between sibling Components are represented by graphical
relationships between the corresponding Objects in the diagram. Like for all the
other graphical edition functions, most constructs can be shown either with the
UML or the HOOD notation. However, the HOOD view often shows more
details for Ports and Connections.

Ports Connections can be defined with Use relationships on the Operation
view. Use relationships are directional and will only connect Out and In Out
Ports from the origin to In and In Out Ports of the destination. Two opposed
links are thus necessary to fully connect two Components with compatible
composite interfaces. Dataflow labels may be added to the graphical notation to
better highlight the Data items that are propagated by the Ports.

When such links are defined, point to point mapping between Ports are
established in regards to the Port names and/or the propagated Data names.
When several Ports propagate Data of the same name, a concatenation of the
corresponding Port and Data names will be done to avoid ambiguities.

page 48 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

PROCESS IMPLEMENTATION new_process.others
SUBCOMPONENTS
 thread_A : THREAD thread_A;
 thread_B : THREAD thread_B;
CONNECTIONS
 DATA PORT thread_B.B2A -> thread_A.B2A;
 DATA PORT thread_B.AB2BA -> thread_A.AB2BA;
 DATA PORT thread_A.A2B -> thread_B.A2B;
 DATA PORT thread_A.AB2BA -> thread_B.AB2BA;
END new_process.others;

THREAD thread_A
FEATURES
 B2A : IN DATA PORT T_port;
 A2B : OUT DATA PORT T_port;
 AB2BA : IN OUT DATA PORT T_port;
END thread_A;

THREAD thread_B
FEATURES
 B2A : OUT DATA PORT T_port;
 A2B : IN DATA PORT T_port;
 AB2BA : IN OUT DATA PORT T_port;
END thread_B;

Note that the current version of the AADL code generator doesn't support
Parameter Connections.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 49

Access Connections can also be represented by simple Use relationships
between Processes, Thread Groups, Threads or Subprograms and shared
Data Components.

PROCESS new_process
END new_process;

PROCESS IMPLEMENTATION new_process.others
SUBCOMPONENTS
 new_thread : THREAD new_thread;
 shared_data : DATA shared_data;
CONNECTIONS
 DATA ACCESS shared_data -> new_thread.shared_data;
END new_process.others;

THREAD new_thread
FEATURES
 shared_data : REQUIRES DATA ACCESS shared_data;
END new_thread;

DATA shared_data
END shared_data;

page 50 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.3.2. Up and down the containment hierarchy

Ports Connections along the containment hierarchy can be defined by the
Implemented_By links (also called Delegate in UML 2.0) between the
Provided Interface of a container Component and the Provided Interface of
contained Components.

PROCESS new_process
FEATURES
 outer_port : IN EVENT PORT;
END new_process;

PROCESS IMPLEMENTATION new_process.others
SUBCOMPONENTS
 new_thread : THREAD new_thread;
CONNECTIONS
 EVENT PORT outer_port -> new_thread.inner_port;
END new_process.others;

THREAD new_thread
FEATURES
 inner_port : IN EVENT PORT;
PROPERTIES
 Dispatch_Protocol => sporadic;
END new_thread;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 51

Required Access Connections may also be defined between the Required
Interface of a container Component and the Required Interface of contained
Components. This especially occurs when an inner Thread requires access to a
share Data Component that is also used by the Process at a higher level. This
pattern can be described with Stood thanks to the Use Uncle relationship:

at higher level at lower level

PROCESS new_process
FEATURES
 remote_data : REQUIRES DATA ACCESS remote_data;
END new_process;

PROCESS IMPLEMENTATION new_process.others
SUBCOMPONENTS
 new_thread : THREAD new_thread;
CONNECTIONS
 DATA ACCESS remote_data -> new_thread.remote_data;
END new_process.others;

THREAD new_thread
FEATURES
 remote_data : REQUIRES DATA ACCESS remote_data;
END new_thread;

page 52 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.4. Operational modes

Operational Modes may be defined by creating a State Transition Diagram
(STD) for the current Process. States will be used to represent Modes and In
Event Ports defined within the Provided Interface of the Process will act as
Transition events. To create a STD, select the Process and use the contextual
menu Open state diagram.

It is then possible to create States and Transitions and to allocate one of the
Event Ports to each Transition.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 53

This information will be used by the AADL code generator to produce
operational modes:

SYSTEM new_system
END new_system;

SYSTEM IMPLEMENTATION new_system.others
SUBCOMPONENTS
 new_process : PROCESS new_process;
END new_system.others;

PROCESS new_process
FEATURES
 start : IN EVENT PORT;
 stop : IN EVENT PORT;
 restart : IN EVENT PORT;
END new_process;

PROCESS IMPLEMENTATION new_process.others
MODES
 init : INITIAL MODE;
 running : MODE;
 suspended : MODE;
 init -[start]-> running;
 running -[stop]-> suspended;
 suspended -[restart]-> running;
END new_process.others;

page 54 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.3.5. Properties

Real Time Attributes that have been specified in the Stood model will be
translated into closest corresponding AADL Properties.

example:

The AADL code generated by Stood will be:

THREAD task
PROPERTIES
 Dispatch_Protocol => periodic;
 Period => 10;
 Deadline => 10;
 Compute_Entrypoint => thread;
END task;

In a similar way, the WCET attribute that can be set for each Operation will be
translated into a Compute_Deadline Property.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 55

When other Properties are required, they must be included into the Stood
model as a specific Constant which name is Properties. The pseudo code
section can be used to insert AADL Property associations that will be inserted
within the generated code.

example:

The AADL code generated by Stood will be:

DATA Sample
PROPERTIES
 Source_Data_Size => 16 B;
END Sample;

page 56 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.4. Set generation options

When ready to generate AADL code from the current Design, switch Stood to
the code tab as shown below. If aadl has been specified as the default target
language, then this will automatically open the AADL code generator. Else, it
may be necessary to reselect the aadl tab in the bottom right area of Stood.

The code window gives access to a few generation options (pragmas), that are
described below. To set an option, first select the Module on which it should

apply, then click on the add pragma button , and select the appropriate
pragma in the list. When a pragma is set, its name is preceded by a >> tick.
The list of all the currently set pragmas is shown in the editing area where it is
possible to remove or dupplicate them, and change the value of their arguments.
Supported pragmas for the AADL code generator are listed in the next sections.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 57

2.4.1. Pragma os

This pragma can be set to specify the name of the Operating System that is
used in the System. Default name is OS. It must be set for the Root Module
only.

example:

If the pragma os(operating_system => ARINC653) is set, then the
following AADL code will be generated:

SYSTEM new_system
END new_system;

SYSTEM IMPLEMENTATION new_system.others
SUBCOMPONENTS
 ARINC653 : SYSTEM OS.ARINC653;
 new_process : PROCESS new_process;
END new_system.others;

page 58 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.4.2. Pragma main

This pragma can be used to specify the main functional entry point for the
current System. The parameter value must refer to the name of one of the
Provided Operations of the main Process. This pragma must be set for the
Root Module only.

example:

If the pragma main(event => start) is set, then the following AADL
code will be generated:

SYSTEM new_system
FEATURES
 start : IN EVENT PORT;
END new_system;

SYSTEM IMPLEMENTATION new_system.others
SUBCOMPONENTS
 new_process : PROCESS new_process;
CONNECTIONS
 EVENT PORT start -> new_process.start;
END new_system.others;

PROCESS new_process
FEATURES
 start : IN EVENT PORT;
 stop : IN EVENT PORT;
 restart : IN EVENT PORT;
END new_process;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 59

2.4.3. Pragma compact

This pragma can be set to ask the generator to create only one AADL source
code file for the whole Design (Package or Process). The default option, when
the pragma is reset, is to generate one AADL file for each Component or
Package. This pragma must be set for the Root Module only.

example:

With such an architecture, default code generation would produce four files:
- new_process.aadl
- thread_A.aadl
- thread_B.aadl
- buffer.aadl

However, if the pragma compact is set, only the file new_process.aadl
will be produced and will contain all the AADL statements for the four
Components.

page 60 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.4.4. Pragma more_packages

Stood can use two different coding patterns to produce AADL code from a set
of Classes. Default rule consists in generating a flat list of Data and
Subprogram Components that are located within a container Package.
However it may be better in some cases to create a specific sub Package for
each Class. This is the purpose of the pragma more_packages that must be set
for the Root Module only.

example:

The default code generation rules will produve the following AADL code:

PACKAGE library
PUBLIC

 DATA class1
 FEATURES
 method1 : SUBPROGRAM method1;
 END class1;

 DATA class2
 FEATURES
 method2 : SUBPROGRAM method2;
 END class2;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 61

 SUBPROGRAM method1
 FEATURES
 me : IN OUT PARAMETER class1;
 END method1;

 SUBPROGRAM method2
 FEATURES
 me : IN OUT PARAMETER class2;
 END method2;

END library;

As the AADL doesn't support Operation overloading, there could have been a
problem if the two methods had the same name. On the contrary, with a
pragma more_packages properly set, the generated code will become:

PACKAGE library
PUBLIC

 DATA void
 END void;

END library;

page 62 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

PACKAGE library::class1
PUBLIC

 DATA class1
 FEATURES
 method1 : SUBPROGRAM method1;
 END class1;

 SUBPROGRAM method1
 FEATURES
 me : IN OUT PARAMETER class1;
 END method1;

END library::class1;

PACKAGE library::class2
PUBLIC

 DATA class2
 FEATURES
 method2 : SUBPROGRAM method2;
 END class2;

 SUBPROGRAM method2
 FEATURES
 me : IN OUT PARAMETER class2;
 END method2;

END library::class2;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 63

2.4.5. Pragma renames

When referencing an existing Component Type or Implementation to
instanciate a Subcomponent, it may be necessary to specify the Package
which contain the referenced Component. In Stood, this will be generally
specified by using a dot notation. However, the internal naming rules of the tool
only allow a simple name for the remote Package. In order to get the
appropriate full name for the Package in the AADL code, a pragma renames
can be used. This pragma must be set for each Environment Object that needs
it, and takes as parameter the actual name to be used in the AADL code:
pragma renames (full_name => A.B.C.P)

example(taken from SAE AS5506, section 5.1):

Data Component Personnel_Record has a Data SubComponent
Home_address which Data Type is provided by the Package relief.
However, relief is in effect the sub Package sei::aadl::relief. A
pragma renames (full_name => sei::aadl::relief) has thus been set for the
local Environment Module relief, as shown below:

page 64 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

The AADL generated code thus becomes:

DATA Personnel_record
FEATURES
 update_address : SUBPROGRAM update_address;
END Personnel_record;

DATA IMPLEMENTATION Personnel_record.others
SUBCOMPONENTS
 Name : DATA basic::string;
 Home_address : DATA sei::aadl::relief::Address;
END Personnel_record.others;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 65

2.4.6. Pragma behavior

One of the current lacks in the AADL specification is the ability to describe
finely the actual behavior of a Thread or a Subprogram, in order to be able to
perform various kinds of verifications. However, it is possible to extend the
language thanks to Property Sets and Annexes. As a result of the French
RNTL project COTRE, a behavioral Annex for the AADL has been defined.
Although there is still some ongoing work on that subject, the current version of
this Annex has been included into Stood.

To activate the generation of this Annex, the pragma behavior (annex =>
COTRE) must be set for the Root Module. The effect will be to copy the
contents of the OBCS and OPCS pseudo code sections into the corresponding
Component Implementation.

example(taken from COTRE):

If the appropriate pseudo code sections have been properly completed, the
following code will be generated for the Component task1, if the pragma
behavior (annex => COTRE) has been set:

page 66 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

THREAD task
FEATURES
 semaphore1 : REQUIRES DATA ACCESS semaphore;
 semaphore2 : REQUIRES DATA ACCESS semaphore;
END task;

THREAD IMPLEMENTATION task.T1
PROPERTIES
 Dispatch_Protocol => periodic;
 Period => 13;
 Compute_Entrypoint => thread;
ANNEX COTRE {**
 STATES
 s0, s1, s2, s3, s4, s5, s6, s7, s8 : STATE;
 s0 : INITIAL STATE;

 TRANSITIONS
 s0 -[]-> s1 { PERIODIC_WAIT };
 s1 -[]-> s2 { COMPUTATION(1.9ms, 1.9ms) };
 s2 -[semaphore1.wait ! (-1.0ms)]-> s3;
 s3 -[]-> s4 { COMPUTATION(0.1ms, 0.1ms) };
 s4 -[semaphore2.wait ! (-1.0ms)]-> s5;
 s5 -[]-> s6 { COMPUTATION(2.5ms, 2.5ms) };
 s6 -[semaphore2.release !]-> s7;
 s7 -[]-> s8 { COMPUTATION(1.5ms, 1.5ms) };
 s8 -[semaphore1.release !]-> s0;
**};
END task.T1;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 67

2.4.7. Pragma reverse

This pragma is currently useful only in collaboration with the pragma
behavior. It offers the ability to perform round trip engineering between the
AADL source code and the Stood design model for the behavioral code located
into the corresponding Annex. The pragma reverse has no parameter and must
be set on the Root Module only.

example:

If the two pragmas behavior (annex=>COTRE) and reverse have been set,
then the following code will be generated for an empty Thread
Implementation:

THREAD IMPLEMENTATION new_thread.others
ANNEX COTRE {**
 -- <begin pseudo::obcs new_thread>
 -- <end>
 -- <begin pseudo::OpDef new_thread thread>
 -- <end>
**};
END new_thread.others;

Annex specific code may then be added between the begin and end tags and
will be fed back to the Stood model, when pressing the round trip button:

page 68 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.4.8. Pragma type_name

By default, an AADL Component Type takes the same name as the
corresponding Module in Stood. It is however possible to change this name by
specifying it in a pragma type_name (name => reused_type_name). This
pragma must be set for each Module that needs it.

example:

If the pragma type_name (name => task) has been set for the Module
thread, then the following code will be generated:

THREAD task
PROPERTIES
 Dispatch_Protocol => periodic;
 Compute_Entrypoint => thread;
END task;

This pragma may be especially useful in collaboration with the pragma
implementation_name, to declare several Implementations for the same Type.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 69

2.4.9. Pragma implementation_name

Default name for an AADL Component Implementation is others. It is
however possible to change this name by using a pragma implementation_name
(name => other_name). This pragma must be set for each Module that needs
it. This pragma may be especially useful in collaboration with the pragma
type_name, to declare several Implementations for the same Type.

example:

If the following pragmas have been set:
- For Module new_process:

pragma implementation_name (name => demo)
- For Module task1:

pragma type_name (name => task)
pragma implementation_name (name => T1)

- For Module task2:
pragma type_name (name => task)
pragma implementation_name (name => T2)

Then the following code will be generated:

PROCESS IMPLEMENTATION new_process.demo
SUBCOMPONENTS
 task1 : THREAD task.T1;
 task2 : THREAD task.T2;
END new_process.demo;

page 70 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

2.5. Generate and view AADL code

To start the generation of the AADL code, select the Tools/Code/Full extraction

menu or simply press the button, then select OK in the dialog box.

When completed, the result of the code generation process is shown as follow:

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 71

For each Module of the Design, select the .aadl section to edit the
corresponding generated AADL code. If the pragma compact has been set, then
the whole AADL specification will be located inside the Root Module.

It is possible to make changes in theses source files. Changes can be saved with

the button to the AADL syntax can be checked with the
button. If the pragma reverse has been set, the changes done between the round

trip engineering tags will be fed back to the Design model by pressing the
button.

The AADL source file can also be edited directly from the Design database.
Default location is the _aadl subdirectory in the Design directory. To open it
from Stood, use the Tools/Open directory/Design directory menu.

page 72 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

3. AADL import
To import an existing AADL specification into a new HOOD Design or to
update an existing one, open an existing System or create a new one, then use
the Design/New design from/aadl or Design/Update design from/aadl menu.

It is then necessary to select a .aadl file from the dialog box and press the
Open button.

Important Notes:

- All the AADL source files to be parsed to create or update the Design must
be located within the same directory.
- Avoid any code dupplication within the parsed directory.
- The selected file name must be the name of the root AADL Package or
Component to be parsed. It must include the Component Type name and the
Component Implementation name, separated by an underscore character.
- To get proper results, all Subcomponents must refer to an existing
Component Type and Implementation.
- It may be necessary to perform the import in several steps, one for each root
Package or Component. In that case, it may be necessary to rename the
corresponding AADL source file if it contains several roots.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 73

Example:

Let's consider the following AADL source file (taken from SAE AS5506, section
4.5). It is composed of two parts: the Package Sampling and its contents, as
well as the Process Implementation Sample_Manager.Slow_Update and
its contents.

package Sampling
public
data Sample
 properties
 Source_Data_Size => 16 B;
end Sample;

data Sample_Set
features
 read : subprogram;
 write : subprogram;
properties
 Source_Data_Size => 1 Mb;
end Sample_Set;

data Dynamic_Sample_Set extends Sample_Set
end Dynamic_Sample_Set;
end Sampling;

thread Init_Samples
features
 OrigSet : requires data access Sampling::Sample_Set ;
 SampleSet : requires data access Sampling::Sample_Set ;
end Init_Samples ;

thread Collect_Samples
features
 Input_Sample : in event data port Sampling::Sample;
 SampleSet : requires data access Sampling::Sample_Set ;
end Collect_Samples ;

page 74 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

thread implementation Collect_Samples.Batch_Update
refines type
 Input_Sample: refined to in event data port
 Sampling::Sample_Set;
end Collect_Samples.Batch_Update;

thread Distribute_Samples
features
 SampleSet : requires data access Sampling::Sample_Set ;
 UpdatedSamples : out event data port Sampling::Sample;
end Distribute_Samples ;

process Sample_Manager
features
 Input_Sample: in event data port Sampling::Sample;
 External_Samples: requires data access Sampling::Sample_Set;
 Result_Sample: out event data port Sampling::Sample;
end Sample_Manager ;

process implementation Sample_Manager.Slow_Update
subcomponents
 Samples: data Sampling::Sample_Set;
 Init_Thread : thread Init_Samples;
 -- the required access is resolved to a subcomponent decl.
 Collect_Samples: thread Collect_Samples.Batch_Update;
 Distribute: thread Distribute_Samples ;

connections
 data access Samples -> Init_Thread.SampleSet;
 data access External_Samples -> Init_Thread.OrigSet;
 data access Samples -> Collect_Samples.SampleSet;
 event data port Input_Sample -> Collect_Samples.Input_Sample;
 data access Samples -> Distribute.SampleSet;
 event data port Distribute.UpdatedSamples -> Result_Sample;
end Sample_Manager.Slow_Update ;

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 75

To properly import this AADL code into Stood, it is necessary to create two
separate directories, each of them containing a copy of the original file. Within
the first directory, the source file must be renamed into sampling.aadl, and
within the second directory, the same file must be renamed into
sample_manager_slow_update.aadl. The import process will be done
in two steps, one to import the Package, and one to import the instanciated
Process. Note that the two files could have been let in the same directory if the
had contained no dupplicated code.

After some simple changes in the diagrams layout to improve the readability,
the result is as follow. The diagrams below just show the architecture. Detailed
design information is also imported into the database, such as some Properties
and comments. On the contrary some AADL constructs are not supported by
the import function yet. Each diagram can be displayed either with the HOOD
or the UML 2.0 graphical notation.

page 76 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

The high level view of the architecture shows an Active Component that
represents the Process instance, a Passive Component that represents the
Package of Data Types (note that a better representation would have been an
UML Package there), and an external shared Component instance that is
required by the Process.

The diagram showing the contents of the Process has been provided here with
the HOOD notation that offers more details. It is easy to recognize the three
Thread Subcomponents and the local shared Data instance. Data Ports are
mapped to Operations like for the AADL export function.

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 77

Finally, the contents of the Package shows three Classes that are displayed
with the UML notation which is more appropriate here. Note that the
inheritance link between the two Classes Dynamic_Sample_Set and
Sample_Set is not shown because the it is currently managed at a
Component Implementation Extension level only. Source_Data_Size
Properties are represented by Constants in the Stood Design model.

After this import operation, the software design process may continue by
adding detailed design information, such as design documentation items and
target language code sections. It becomes then possible to use the existing
verification and automatic code and documentation generation tools, to complete
the full AADL to code industrial process that is supported by Stood.

page 78 - STOOD AADL Import/Export User Manual © TNI Europe - May 2005

STOOD AADL Import/Export User Manual © TNI Europe - May 2005 - page 79

TNI Europe
Triad House

Mountbatten Court
Worall Street

Congleton
Cheshire

CW12 1AG
UK

+44 1260 291 449

Ellidiss Technologies
Technopôle Brest-Iroise
115 rue Claude Chappe

29280 Plouzané
Brittany
France

+33 298 451 870

www.tni-world.com
stood@tni-world.com

