SYSTEM_CONFIGURATION Design name

Company name - page 1

SYSTEM_CONFIGURATION IS

ROOT_OBJECTS
--\Groslulu\homed\stood\stood4.3\libs\calendar|--,
--[\\Groslulu\homed\stood\stood4.3\examples\nt_consolel--,
--[\\Groslulu\homed\stood\stood4.3\exampl es\philosophers|--,
--\Groslulu\homed\stood\stood4.3\exampl es\screen|--,
--[\\Groslulu\homed\stood\stood4.3\libs\standard|--,
--[\\Groslulu\homed\stood\stood4.3\libs\text_iol--

GENERIC
--[\\Groslulu\homed\stood\stood4.3\libs\discrete_random|--,
--N\Groslulu\homed\stood\stood4.3\exampl es\random_generic|--

END

Design Tree

I SYSTEM_CONFIGURATION I

philosophers

windows

screen
standard

text_io

Inheritance Tree

Philosopher

STOOD 4.3 (c) TNI date

issue

SYSTEM_CONFIGURATION

Design name

Company name - page 2

Structural (types) Diagram

type

SYSTEM_CONFIGURATION

'philosophers

screen

Height
Width
Position

calendar

Time
Year_Number
Month_Number
Day_Number
Day_Duration

standard

Boolean

Integer

Natural

Positive

Float

Character
Wide_Character
String
Wide_String
Duration

[text_io

File_Type
File_Mode
Count
Positive_Count
Field
Number_Base
Type_Set

Functional (oper.) Diagram

operation

SYSTEM_CONFIGURATION

[philosophers

ASER 'lol *Start

screen

calendar

Beep
ClearScreen
MoveCursor

Clock
Year
Month
Day
Seconds
Split
Time_Of

-

[text_io

I(FilefManagement)

{Control_Of_Default}

{Buffer_Control}

{Line_And_Page_Length}
{Column_Line_And_Page_Control
{Character_Input_Output}
{String_Input_Output}

STOOD 4.3 (c) TNI

date

issue

SYSTEM_CONFIGURATION Design name Company name - page 3

List of Requirements

BR1/Concurrent_philosophers:
BR2/Shared_chopsticks:
BR3/Dynamic_events report:
BR4/Synchronous_events_report:
BR5/Dining_room_states:
BR6/Philosopher_states:
FR1/Prepare& begin_diner:
FR2/Provide_chopsticks:
FR3/Report_events:
FR4/Open&initialize_window:
FR5/Write_messages:
FR6/Start_eating:
SR1/Dining_room_seats:
SR2/Philosophers:
SR3/Chopsticks:
SR4/Display_windows:
SR5/Simulation_timing:

STOOD 4.3 (c) TNI date issue

philosophers Design name Company name - page 4

OBJECT philosophers|S
PASSIVE

pragmas
PRAGVA | i ne_feed
(option => 1)
PRAGMA | i ne_feed
(option => 2)
PRAGVA nai n
(operation_name => start,
unit_nanme => run)
PRAGVA no_subunits
PRAGVA conment
PRAGVA compi | er
(name => gnat,
options => --| |--)

DESCRIPTION

PROBLEM

STOOD 4.3 (c) TNI date issue

philosophers Design name Company name - page 5

Sketch of the Problem

O O
o110
O__

Referenced Documents (text)

This application isthe HOOD version of "Dining Philosophers - Adad5 edition" from Michael B. Feldman, The
George Washington University, July 1995.
HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD toolset.

Analysis of Requirements

Structural Requirements (text)

This application should manage:

SR1: the dining room (cf.SR1/Dining_room_seats:)

SR2: five instances of Philosopher (cf.SR2/Philosophers:)

SR3: five instances of shared chopstick (cf.SR3/Chopsticks:)

SR4: and display graphically simulation events on screen windows (cf.SR4/Display_windows:)

Philosophers and chopsticks implementation is shared into two distinct parts:

STOOD 4.3 (c) TNI date issue

philosophers

Design name Company name - page 6

- abstract description within arelevant HOODA4 class
- concrete instantiation as data inside dining room

Functionnal Requirements (text)
The unique functional requirement at this higher level module is to launch the application. Start procedure is used

as main subprogram of the application.
FR1: start the diner (cf.FR1/Prepare& begin_diner:)

Behavioural Requirements (text)

BR1: Each Philosopher should behave concurrently. (cf.BRL/Concurrent_philosophers:)

BR2: Each chopsticks must be shared between two Philosophers. (cf.BR2/Shared_chopsticks:)

BR3: Dining room must initiate the simulation and report events dynamically. (cf.BR3/Dynamic_events _report:)

L ocal Environment

Parent General Description (text)

In addition to usual Adalibraries (STANDARD, TEXT_1O and CALANDAR), adedicated environment module is
used to display information to the screen.

This "screen" module acts as a display device interface for our application. Two implementations may be used:

- an ANSI terminal emulator for UNIX workstations.

- aconsoleinterface for Windows 95 or NT PCs.

A generic module "random_generic" provides an interface to Ada.Numerics.Discrete_ Random to implement an
integer pseudo-random number generator.

SOLUTION

General Strategy (text)

This application was manually reverse engineered from Michael B. Feldman's Ada sources.

Each package pair is represented by a hood module, but of various kinds. Chosen strategy was to be able to
re-generate code as close as possible from original one.

Other design choices could of course lead to other solutions.

I dentification of Child Modules (text)

Philosophers application may be broken down into five modules:

- "society" simply provides alist of philosopher's name and ID. It is designed as a simple passive HOOD4 object.

- "room" describes the simulator logics, and instanciates statically main control task, and dynamically each
philosopher. It is designed as an active HOOD4 object.

- "phil" is an abstract description of adining philosopher. It is designed as an active HOOD4 class.

- "chop" is an abstract description of a shared chopstick. It is designed as a passive HOOD4 class with concurrency
constrained operations.

- "window" is an abstract simple window manager. Isis designed as a passive HOODA4 class.

Structural Description

I dentification of Data Structures (text)
None.

STOOD 4.3 (c) TNI date

issue

philosophers Design name

Company name - page 7

Structural (types) Diagram

'philosophers

“array of Philosopher_Ptr"
-~—>

L d
discriminant

society

Unique_DNA_Codes I

A [phil

Philosopher
Philosopher_Ptr
States

"array of Window" array of Stick_Ptr’

I

windows

Window

kFirst, Last, Current

Stick
Stick_Ptr

' screen '

Functional Description

I dentification of Operations (text)
Start is the main subprogram which calls room.start_serving.

Grouping Operations (text)
None.

STOOD 4.3 (c) TNI date

issue

philosophers Design name Company name - page 8
Functional (oper.) Diagram
' CALENDAR '
[philosophers a
ASER ’ll*Sta" i
—
starting

ASER |
HSER -z *report_state

*start_serving

get_stick

LSER

o start_eating

displaying

windows

open

title
borders
movecursor
put#l

put#2
new_line

—
reporting

RWER - [+
of *pick_up
e oo |

'screen ' ' TEXT_IO '

Behavioural Description

I dentification of L ocal Behaviour (text)

Start is asynchronous.

Justification of Design Decisions (text)

Design choices comply with original Ada source code.

Another solution would have been to instantiate statically each Philosopher, and perhaps each chopstick. In this case
they would have been designed respectively as instances of active generic modules and instances of passive generic

modules.

STOOD 4.3 (c) TNI

date

issue

philosophers Design name Company name - page 9

PROVIDED_INTERFACE
OPERATIONS
Start

operation spec. description (text)
Main procedure.

operation declaration (hood)
Start;

real time attributes (hood)
WCET

OBJECT_CONTROL_STRUCTURE

obcs spec. description (text)
The application is launched asynchronously.

constrained oper ations
Start CONSTRAI NED BY ASER STATE;

REQUIRED_INTERFACE

OBJECT cal endar;
TYPES
Ti ne;
CONSTANTS
NONE
OPERATI ON_SETS
NONE
OPERATI ONS
C ock;
EXCEPTI ONS
NONE
OBJECT screen;
TYPES
Hei ght; Position; Wdth;
CONSTANTS
NONE
OPERATI ON_SETS
NONE
OPERATI ONS
MoveCur sor; C ear Screen;
EXCEPTI ONS
NONE
OBJECT st andard,;
TYPES
Natural ; Integer; Positive; Bool ean; Character; String; Duration;
CONSTANTS
NONE
OPERATI ON_SETS

OPERATI ON_SETS

STOOD 4.3 (c) TNI date issue

philosophers Design name

Company name - page 10

NONE
OPERATI ONS

Put; New Li ne;
EXCEPTI ONS

NONE

INTERNALS

OBJECTS

room
Wi ndows;
phil;
soci ety;
chop;

OPERATIONS
Start

implemented_by
roomstart_serving

OBJECT_CONTROL_STRUCTURE

implemented_by
room

END philosophers

STOOD 4.3 (c) TNI date

issue

room Design name Company name - page 11

OBJECT room IS
ACTIVE
DESCRIPTION
PROBLEM

Statement of the Problem (text)

Room manages the simulation:

- intanciates Philosophers and Sticks.

- assigns each Philosopher a seat and his chopsticks.

- creates windows on the screen.

- displays information dynamically inside each window.(cf.FR3/Report_events:)

Referenced Documents (text)

This application isthe HOOD version of "Dining Philosophers - Adad5 edition” from Michael B. Feldman, The
George Washington University, July 1995.

HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD toolset.

Analysis of Requirements

Structural Requirements (text)

Room must manage:

SR1: dining room seats (cf.SR1/Dining_room_seats:)
SR2: Philosophers (cf.SR2/Philosophers:)

SR3: chopsticks (cf.SR3/Chopsticks:)

SR4: display windows (cf.SR4/Display_windows:)
SR5: simulation timing (cf.SR5/Simulation_timing:)

Functionnal Requirements (text)

Room provides thre functional services:

FR1: prepare and begin the diner. (cf.FR1/Prepare& begin_diner:)

FR2: provide chopsticks to Philosophers. (cf.FR2/Provide_chopsticks:)
FR3: report events to outside world. (cf.FR3/Report_events:)

Behavioural Requirements (text)

Dining room behaviour should be as follow:

BR3: start diner asynchronously (cf.BR3/Dynamic_events report:)

BR4: report event synchronously (cf.BR4/Synchronous_events report:)

BR5: Dining room has two possible states (Waiting or Dining) (cf.BR5/Dining_room_states:)

L ocal Environment

Parent General Description (text)
Please refer to parent module description.

SOLUTION

General Strategy (text)

Dining room is designed as an active HOOD4 object, as it must have its own control flow.

Structural element (types, constants and data) are al hidden inside internal part.

Behaviour is described by aHOOD4 STD (State Transtion Diagram) and constraints on provided operations, and
encapsulated inside aHOOD OBCS (Object Control Structure).

Implementation of functional services are descibed directly inside HOOD OPCSs (Operation Control Structures).

Code generator will produce a package containing a task called OBCS.
(cf.BR5/Dining_room_states:)

STOOD 4.3 (c) TNI date issue

room

Design name Company name - page 12

Structural Description

I dentification of Data Structures (text)

Structural elements are al hidden inside internals of this module, as none of them is required from outside.
They are listed below:

SR1:

- type Table_Type describes the table.

- constant Table_Size specifies the size of the table (5 seats).
- data Phil_Seats is used to allocate a seat to each Philosopher.
SR2:

- data P1 to P5 are five instances of Phil.Philosopher.

- data Philsisan array of pointers on these Philosophers.
SR3:

- data S1 to S5 arefive instances of Chop.Stick.

- data Sticks is an array of pointers on these chopsticks.
SR4:

- data Phil_Windowsis an array of five Windows.window.
SR5:

- data Start_Timeisinitialized when simulation starts.

- data T provides current simulation time.

Functional Description

I dentification of Operations (text)
Operations provided by dining room are:

FR1:

Start_Serving: sets up the table and start the diner.

Itiscalled by main procedure of the program.

FR2:

Get_Stick: implements the request from a Philosopher to pick up a chopstick.

This procedure didn't exist inside original Ada code where chopsticks were declared as public data, and were thus
directly visible from Phil module. Provided data being forbidden when designing with HOOD, chopstick instances
were declared within the internals, and Get_Stick access function was added to implement remote requests.

FR3:

Report_State: is used by Philosophersto indicate in which internal state they are.

Grouping Operations (text)
None.

Behavioural Description

I dentification of L ocal Behaviour (text)
Dining room behaviour is represented by a State Transition model and constraints on operation execution requests:

BR5: Dining room has two distinct states:

- waiting state, identified by internal state variable "started” set to FALSE, where Room may only receive
"Start_Serving" execution requests.

- dining state, identified by internal state variable "started" set to TRUE, where Room may only receive
"Report_State" execution requests.

BR3: Start_Serving has an asynchronous execution request (ASER).

BR4: Report_State has a highly synchronous execution request (HSER), so that Philosopher 'sinternal state doesn't
change while current state is displayed on relevant window.

Justification of Design Decisions (text)

A few changesin initial source code were required to fit HOOD4 design rules:

- Sticks variable was initially declared within package spec, which is forbidden with HOOD, so it was moved into
package body, and an additional access function (Get_Stick) may be used to pick_up on one of the five chopsticks.

- Aschopsticks are instances of a protected type, which is thus alimited type, they cannot be returned directly by an
access function. Sticks thus became an array of pointers on chopsticks.

- To comply with standard HOOD code generation rules, task entries are not directly called from outside. Remote
clients should call Room.Start_Serving and Room.Report_State which remame task entries of the same name. For the

STOOD 4.3 (c) TNI date issue

room

Design name Company name - page 13

same reason, relevant bodies are implemented into additional internal OPCS_Start_serving and OPCS_Report_State
procedures.

- Within original code, main control task was called "Maitre_D". Its name become "OBCS" when generated from a
HOOD design. Task body is also automatically generated from STD and operation constraints: thisimplies changes to
code structure.

PROVIDED_INTERFACE
OPERATIONS

start_serving

operation spec. description (text)

Room.Start_Serving is called by main procedure and renames OBCS.Start_Serving task entry.
This procedure has no parameter.

(cf.FRY/Prepare& begin_diner:)

operation declaration (hood)
start_serving;

real time attributes (hood)
WCET

report_state

operation spec. description (text)

Room.Report_State is called by Phil.Start_Eating and renames OBCS.Report_State task entry.
This procedure has four parameters:

- Which_Phil: identifies actual Philosopher sending the message.

- State: current state of sender.

- How_L ong: length of current state (or identifier of used chopstick).

- Which_Meal: current meal.

(cf.FR3/Report_events:)

operation declaration (hood)
report _state(

Wi ch_Phil : in Society.Uni que_DNA Codes;
Which _State : in Phil. States;
How Long : in Natural := --|0]--;
Which_Meal : in Natural := --]0|--

);

real time attributes (hood)

WCET

get_stick

operation spec. description (text)

Room.Get_Stick is an access function to internal Sticks variable.

It requires achopstick ID (Which_Stick) to return a pointer to relevant protected object.
(cf.FR2/Provide_chopsticks:)

operation declaration (hood)
get _stick(which_Stick : in Positive) return Chop.Stick_Ptr;

real time attributes (hood)
WCET

STOOD 4.3 (c) TNI date

issue

room Design name Company name - page 14

OBJECT_CONTROL_STRUCTURE

obcs spec. description (text)

A dedicated state variable manages current state of dining room.
Thisvariable "Started" has a default value of "FALSE" and become"TRUE" after Start_Serving has been executed.
Start_Serving and Report_State have both STATE and protocole constraints.

constrained oper ations

start _servi ng CONSTRAI NED BY ASER STATE;
report_state CONSTRAI NED BY HSER STATE;

REQUIRED_INTERFACE

OBJECT cal endar;
TYPES
Ti me;
CONSTANTS
NONE
OPERATI ON_SETS
NONE
OPERATI ONS
d ock;
EXCEPTI ONS
NONE
OBJECT chop;
TYPES
Stick _Ptr; Stick;
CONSTANTS
NONE
OPERATI ON_SETS
NONE
OPERATI ONS

St ates; Phil osopher; Phil osopher Ptr;
CONSTANTS
NONE
OPERATI ON_SETS
NONE
OPERATI ONS
start _eating;
EXCEPTI ONS
NONE
OBJECT soci ety;
TYPES
Uni que_DNA_ Codes;
CONSTANTS
NONE
OPERATI ON_SETS
NONE
OPERATI ONS
get _nane;
EXCEPTI ONS
NONE
OBJECT st andard,;
TYPES
Natural ; Integer; Positive; Bool ean;
CONSTANTS
NONE
OPERATI ON_SETS

EXCEPTI ONS

STOOD 4.3 (c) TNI date issue

room

Design name

Company name - page 15

NONE

OBJECT wi ndows;
TYPES

W ndow,

CONSTANTS

NONE

OPERATI ON_SETS

NONE

OPERATI ONS
open; borders; title; put#l; new.|ine;
EXCEPTI ONS

NONE

DATAFLOWS
starting => phil;
di spl ayi ng => wi ndows;

INTERNALS
TYPES

Table Type

type description (text)
Identifies the possible locations around the table.

type attributes (hood)
ATTRI BUTES NONE

type enumeration (hood)
ENUVERATI ON NONE

type definition (ada)

subtype Table Type is Positive range 1..Tabl e_Si ze;

CONSTANTS

Table Size

constant description (text)

Specifies the total number of seats around the table. It islimited to five in this example.

constant definition (ada)
Tabl e_Size : constant := 5;

DATA

S1

data description (text)
First chopstick shared between seats 5 and 1.

data declaration (ada)
S1 : aliased Chop. Stick;

STOOD 4.3 (c) TNI date

issue

room Design name Company name - page 16

data access from pseudo_code
(da) room S1 IS USED BY NONE

data access from Ada code

(da) room S1 IS USED BY
(op) roomstart_serving [R

data access from C code
(da) room S1 IS USED BY NONE

data access from C++ code
(da) room S1 IS USED BY NONE

S2

data description (text)
second chopstick shared between seats 1 and 2.

data declaration (ada)
S2 . aliased Chop. Stick;

data access from pseudo_code
(da) room S2 IS USED BY NONE

data access from Ada code

(da) room S2 IS USED BY
(op) roomstart_serving [R|

data access from C code
(da) room S2 IS USED BY NONE

data access from C++ code
(da) room S2 IS USED BY NONE

S3

data description (text)
Third chopstick shared between seats 2 and 3.

data declaration (ada)
S3 : aliased Chop. Stick;

data access from pseudo_code
(da) room S3 IS USED BY NONE

data access from Ada code

(da) room S3 IS USED BY
(op) roomstart_serving [R|

data access from C code
(da) room S3 IS USED BY NONE

data access from C++ code
(da) room S3 IS USED BY NONE

STOOD 4.3 (c) TNI date issue

room Design name Company name - page 17

A

data description (text)
Fourth chopstick shared between seats 3 and 4.

data declaration (ada)
S4 . aliased Chop. Stick;

data access from pseudo_code
(da) room S4 IS USED BY NONE

data access from Ada code

(da) room S4 IS USED BY
(op) roomstart_serving [R|

data access from C code
(da) room S4 |'S USED BY NONE

data access from C++ code
(da) room S4 |'S USED BY NONE

S5

data description (text)
Fifth chopstick shared between seats 4 and 5.

data declaration (ada)
S5 : aliased Chop. Stick;

data access from pseudo_code
(da) room S5 IS USED BY NONE

data access from Ada code

(da) room S5 IS USED BY
(op) roomstart_serving [R|

data access from C code
(da) room S5 IS USED BY NONE

data access from C++ code
(da) room S5 IS USED BY NONE

Sticks

data description (text)
An array of pointers to the chopsticks.

data declaration (ada)
Sticks : array (Table_Type) of Chop.Stick _Ptr;

data access from pseudo_code
(da) room Sticks IS USED BY NONE

data access from Ada code

(da) room Sticks |'S USED BY
(op) roomget_stick [R
(op) roomstart_serving [R|

STOOD 4.3 (c) TNI date issue

room Design name Company name - page 18

data access from C code
(da) room Sticks IS USED BY NONE

data access from C++ code
(da) room Sticks IS USED BY NONE

P1

data description (text)
First Philosopher.

data declaration (ada)
P1 : aliased Phil.Philosopher(My_ID => 1);

data access from pseudo_code
(da) room P1 IS USED BY NONE

data access from Ada code

(da) roomP1 IS USED BY
(op) roomstart_serving [R|

data access from C code
(da) room P1 IS USED BY NONE

data access from C++ code
(da) room P1 IS USED BY NONE

P2

data description (text)
Second Philosopher.

data declaration (ada)
P2 : aliased Phil.Phil osopher(My_ID => 2);

data access from pseudo_code
(da) room P2 IS USED BY NONE

data access from Ada code

(da) room P2 | S USED BY
(op) roomstart_serving [R

data access from C code
(da) room P2 IS USED BY NONE

data access from C++ code
(da) room P2 IS USED BY NONE

P3

data description (text)
Third Philosopher.

data declaration (ada)
P3 : aliased Phil.Philosopher(My_ID => 3);

STOOD 4.3 (c) TNI date issue

room

Design name

Company name - page 19

data access from pseudo_code
(da) room P3 IS USED BY NONE

data access from Ada code

(da) room P3 | S USED BY
(op) roomstart_serving [R

data access from C code
(da) room P3 IS USED BY NONE

data access from C++ code
(da) room P3 IS USED BY NONE

P4

data description (text)
Fourth Philosopher.

data declaration (ada)

P4 : aliased Phil.Phil osopher(M/_ID => 4);

data access from pseudo_code
(da) room P4 IS USED BY NONE

data access from Ada code

(da) room P4 IS USED BY
(op) roomstart_serving [R|

data access from C code

(da) room P4 IS USED BY NONE

data access from C++ code
(da) room P4 IS USED BY NONE

P5

data description (text)
Fifth Philosopher.

data declaration (ada)

P5 :

data access from pseudo_code
(da) room P5 IS USED BY NONE

data access from Ada code
(da) roomP5 IS USED BY

(op) roomstart_serving [R|

data access from C code
(da) room P5 IS USED BY NONE

data access from C++ code
(da) room P5 IS USED BY NONE

al i ased Phil. Phil osopher(MW_ID => 5);

STOOD 4.3 (c) TNI

date

issue

room Design name Company name - page 20

Phils

data description (text)
An array of pointers to the Philosophers.

data declaration (ada)
Phils : array (Table_Type) of Phil.Philosopher_Ptr;

data access from pseudo_code
(da) room Phils I'S USED BY NONE

data access from Ada code

(da) roomPhils IS USED BY
(op) roomstart_serving [R|

data access from C code
(da) room Phils |I'S USED BY NONE

data access from C++ code
(da) roomPhils IS USED BY NONE

Phil_Windows

data description (text)
An array of windows. One window for each seat.

data declaration (ada)
Phil _Wndows : array (Table_Type) of W ndows. W ndow;

data access from pseudo_code
(da) room Phil _Wndows |I'S USED BY NONE

data access from Ada code

(da) room Phil_Wndows IS USED BY
(op) roomreport_state [R]
(op) roomstart_serving [R|

data access from C code
(da) room Phil_Wndows |I'S USED BY NONE

data access from C++ code
(da) room Phil _Wndows |I'S USED BY NONE

Phil_Seats

data description (text)

An array to indicate which seat each Philosopher occupies:
Philosopher 1 occupies seat 1;
Philosopher 2 occupies seat 3;
Philosopher 3 occupies seat 5;
Philosopher 4 occupies seat 4;
Philosopher 5 occupies seat 2;

data declaration (ada)
Phil _Seats : array (Society.Uni que_DNA Codes) of Tabl e_Type;

STOOD 4.3 (c) TNI date issue

room Design name Company name - page 21

data access from pseudo_code
(da) room Phil _Seats |I'S USED BY NONE

data access from Ada code

(da) room Phil _Seats IS USED BY
(op) roomreport_state [R
(op) roomstart_serving [R|

data access from C code
(da) room Phil _Seats IS USED BY NONE

data access from C++ code
(da) room Phil _Seats |I'S USED BY NONE

data description (text)
Current time obtained by Calendar.Clock.

data declaration (ada)
T : Natural;

data access from pseudo_code
(da) roomT IS USED BY NONE

data access from Ada code

(da) roomT IS USED BY
(op) roomreport_state [R

data access from C code
(da) roomT IS USED BY NONE

data access from C++ code
(da) roomT IS USED BY NONE

Start_Time

data description (text)
Time when application is launched.

data declaration (ada)
Start _Tinme : Cal endar. Ti ne;

data access from pseudo_code
(da) room Start_Tinme IS USED BY NONE

data access from Ada code

(da) room Start_Tine IS USED BY
(op) roomreport _state [R]
(op) roomstart_serving [R

data access from C code
(da) room Start_Tine IS USED BY NONE

STOOD 4.3 (c) TNI date issue

room Design name

Company name - page 22

data access from C++ code
(da) room Start_Tine IS USED BY NONE

Started

data description (text)

State variable to switch between "waiting" and "dining" states.
Initial stateis"Waiting".

data declaration (ada)
Started : boolean := fal se;

data access from pseudo_code
(da) room Started IS USED BY NONE

data access from Ada code

(da) room Started 1S USED BY
(op) roomstart_serving [R|

data access from C code
(da) room Started 1S USED BY NONE

data access from C++ code
(da) room Started IS USED BY NONE

OBJECT_CONTROL_STRUCTURE

obcs body description (text)

OBCS isautomatically generated from STD and operation constraints.

state transition diagram

waiting

mm starting

dining

mmm Serving

STOOD 4.3 (c) TNI date

issue

room Design name Company name - page 23

waiting
exiting transitions

starting

state description (text)
Initial state. Started is set to FALSE.

state assignment (ada)
Started : = fal se;

statetest (ada)
not Started

dining

entering transitions
starting, serving

exiting transitions
serving

state description (text)
Running state. Started is set to TRUE.

state assignment (ada)
Started := true;

statetest (ada)
Started

starting

transition event
start _serving

transition from
wai ting
transition to
di ni ng

trans description (text)
Thistransition is triggered by Start_Serving execution request.

No additional condition, neither exception codeis required.
serving

transition event
report_state

transition from
di ni ng

transition to
di ni ng

STOOD 4.3 (c) TNI date issue

room Design name Company name - page 24

transdescription (text)

Thistransition istriggered by Report_Sta te execution request.
No additional condition, neither exception codeis required.
Current state is not changed.

OPERATION_CONTROL_STRUCTURES
OPERATION start_serving IS

oper ation body description (text)

Performs following actions:

- Calculates Start_Time;

- Puts chopsticks on the table;

- Assigns Philosophers to seats at the table;

- Opens and draw awindow to observe each sest;

- Assignsright and left chopsticks to each Philosopher;

used operations

cal endar . d ock

Wi ndows. open

w ndows. bor der s
phil.start_eating

operation code (ada)
begi n

-- starting date is stored:
Start _Tinme : = Cal endar. d ock;

-- chopsticks are put on the table:
Sticks :=
(S1' Access,
S2' Access,
S3' Access,
S4' Access,
S5' Access) ;

-- phil osophers are assigned to seats at the table
Phils :=
(P1' Access,
P3' Access,
P5' Access,
P4' Access,
P2' Access);

-- which seat each phil occupies:
Phil Seats := (1, 3, 5, 4, 2);

-- a window is open for each seat:
Phi | W ndows : =
(W ndows. Open((1, 24), 7, 30),
W ndows. Open((9, 2), 7, 30),
W ndows. Open((9, 46), 7, 30),
W ndows. Qpen((17, 7), 7, 30),
W ndows. Open((17, 41), 7, 30));

-- wi ndows borders are drawn:
for Whiich_Wn in Phil_Wndows'range | oop

W ndows. Bor der s(Phi | _W ndows(Whi ch_Wn),"'+ ,"|"',"'-");
end | oop;

-- phil osophers are assigned their chopsticks:
Phils (1).Start_Eating(1, 1, 2);
Phils (3).Start_Eating(3, 3, 4);
Phils (2).Start_Eating(2, 2, 3);

STOOD 4.3 (c) TNI date issue

room

Design name

Company name - page 25

Phils (5).Start_Eating(5, 1, 5);
Phils (4).Start_Eating(4, 4, 5)

-- dining room state changes:
Started := true;

call treefrom Ada code

| (op) room.start_serving |--| (da) room.Start_Time [R] |

(

(da) room.Sticks [R]
(da) room.S1 [R]
(da) room.S2 [R]
(da) room.S3 [R]
(da) room.S4 [R]

(da) room.S5 [R]

(da) room.P1 [R]
(da) room.P3 [R]
(da) room.P5 [R]

(da) room.P4 [R]

= o
g g
- (<)
8 5
[v)
: :
)
5 2
2 o]
L] o
Y =]
—_ x|

(da) room.P2 [R]

(da) room.Phil_Seats [R] |

—

(da) room.Phil_Windows [R] |

- -
3l le
2| S
HIE
=1 N =]
8l|5
o
=
5(|2
[B K<)
ol
HIE
]
2]

(op) screen.MoveCursor |
(op) text_io.Put

-| (op) phil.start_eating

(op) room.report_state I'

H{ (da) room.T[R] |

(op) calendar.Clock

H (da) room.Start_Time [R] |

H (op) windows.title |.[: (op) windows.put#2 |

(op) windows.new_line H (op) windows.erasetoendofline

-I (da) room.Phil_Windows [R] I

-I (da) room.Phil_Seats [R] |

H (op) society.get_name |— (da) society.Name_Register [R] |

H (op) windows.put#1 (op) windows.erasetoendofiine |

(op) screen.MoveCursor I

(op) text_io.Put

-I (op) windows.new_line |

H (op) room.get_stick |— (da) room.Sticks [R] |

(op) chop.pick_up

(da) room.Started [R]

END start_serving

OPERATION report_statelS

operation body description (text)
Performs following actions:

- Calculates current time;

- Displays a message on relevant window.

(op) chop.put_down

STOOD 4.3 (c) TNI date

issue

(op)
(op,

room Design name Company name - page 26

used operations

cal endar. d ock
W ndows.title
soci ety. get_nane
Wi ndows. put

wi ndows. new | i ne

operation code (ada)
begi n

T := Natural (Calendar.C ock - Start_Tinme);
case Wiich_State is

when Phil . Breathing =>
W ndows. Titl e(
Phi | _W ndows(Phi | _Seat s(Wi ch_ Ph| 1)),
Soci ety. Get _Name(VWich _Phil), '-');
W ndows. Put (
Phi | _W ndows(Phi | _Seat s(Wi ch_Phi |))
"T =" & Integer'lnage (T) &" " &°' Breathlng ");
W ndows. New_Li ne(Phi | _W ndows(Phi | _Seat s(Wi ch_ Phi |)))

when Phi | . Thi nki ng =>
W ndows. Put (
Phi | _W ndows(Phi | _Seat s(Whi ch_Phi |)) ,
"T =" & Integer'lmage (T) &" " & "Thi nk| ng"
& Integer'lmge (How Long) & " seconds.
W ndows. New_Li ne(Phil _W ndows(Phi | _Seat s(Wi ch Phil)));

when Phil . Eating =>

W ndows. Put (
Phi | _W ndows(Phi | _Seat s(Whi ch_Phil)),
"T =" & Integer'|Imge (T) &" " & "Meal"

& Integer' |l mge (VWi ch_Meal) &
& Integer'lmge (How Long) &' seconds
W ndows. New_Li ne(Phi | _W ndows(Phi | _Seat s(W‘u ch Phil)));

when Phil. Done_Eating =>
W ndows. Put (
Phi | _W ndows(Phi | _Seat s(Which_Phil)),
"T =" & Integer'lmage (T) & " " & "Yumyum (burp)");
W ndows. New_Li ne(Phi | _W ndows(Phi | _Seat s(VWi ch_Phil)));

when Phil. Got_One_Stick =>
W ndows. Put (
Phi | _W ndows(Phi | _Seat s(Wi ch_Phi 1)),
"T =" & Int eger'lmage (T) & " " & "First chopstick"
& I nteger' | mage (How_Long));
W ndows. New_Li ne(Phi | _W ndows(Phi | _Seats(Wiich_Phil)));

when Phil.Got_Other_Stick =>

W ndows. Put (
Phi | _W ndows(Phi | _Seat s(Wi ch_Phi 1)),
"T =" & Integer'lnage (T) & " " & "Second chopsti ck"

& Integer' |l mge (How Long));
W ndows. New_Li ne(Phi | Wndows(Phi | _Seats(Wiich_Phil)));

when Phil.Dying =>

W ndows. Put (
Phi | _W ndows(Phi | _Seat s(VWhi ch_Phil)),
"T =" & Integer'lnmage (T) & " " & "Croak")

W ndows. New_Li ne(Phi | _W ndows(Phi | _Seat s(Whi ch’_Phi 1)));

end case; -- Wiich_State

STOOD 4.3 (c) TNI date issue

room Design name Company name - page 27
call treefrom Ada code
I (op) room.report_state H (da) room.T [R] I
H (da) room.Start_Time [R] |
H (op) windows.title (op) windows.put#2 |
I.[: (op) windows.new_line H (op) windows.erasetoendofline (op) screen.MoveCursor |
H (da) room.Phil_Windows [R] |
-I (da) room.Phil_Seats [R] |
H (op) society.get_name |— (da) society.Name_Register [R] |
.| (op) windows.put#1 (op) windows.erasetoendofline |
(op) screen.MoveCursor |
-I (op) windows.new_line I
END report_state
OPERATION get_stick IS
oper ation body description (text)
Just returns a pointer to specified chopstick.
operation code (ada)
begin _ _ _
return Sticks(Which_Stick);
call treefrom Ada code
| (op) room.get_stick |— (da) room.Sticks [R] |
END get_stick
END room

STOOD 4.3 (c) TNI

date

issue

windows Design name Company name - page 28

CLASSwindows|S
PASSIVE

pragmas
PRAGVA init_bl oc
(init_op =>initialize)

DESCRIPTION
PROBLEM

Statement of the Problem (text)
Manager for simple, nonoverlapping windows for alpha-numeric console.

Referenced Documents (text)

This application is the HOOD version of "Dining Philosophers - Ada95 edition” from Michael B. Feldman, The
George Washington University, July 1995.
HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD toolset.

Analysis of Requirements

Structural Requirements (text)
SR4: This modules implements an abstract simple window manager. (cf.SR4/Display_windows:)

Functionnal Requirements (text)

FR4: Open and initialize awindow. (cf.FR4/Open& initialize_window:)
FR5: Write messages at a specified location on the window. (cf.FR5/Write_messages:)

Behavioural Requirements (text)
Windows are passive unshared objects. Thereis no particular behaviour requirements.

L ocal Environment

Parent General Description (text)
Please refer to parent modul e description.

SOLUTION

General Strategy (text)

Window module is designed as a passive HOOD4 class.
It describes awindow data structure and all relevant functional services.

Code generator will produce a package containing a tagged type.

Structural Description

I dentification of Data Structures (text)
SR4: type Window is a class which attributes describe first, last and current positions of the cursor on the screen.

Functional Description

I dentification of Operations (text)

Following operations are primitive operations of type Window:

FR4:

- Initialize: package init block is used to clear the screen.

- Open: instanciates a new window and initialize its attributes with passed values.
- Title: writes atitle and optionnaly a separation line.

- Borders: draws top, right, left and bottom lines.

FR5:

STOOD 4.3 (c) TNI date issue

windows

Design name

Company name - page 29

- MoveCursor: sets current cursor position.

- Put#1: writes acharacter at current cursor position.

- Put#2: writes a string at current cursor location.

- New_Line: puts current cursor position at the beginning of next line.
- EraseToENndOfLine: erases from current location to the end of line.

Grouping Operations (text)
None

Behavioural Description

I dentification of L ocal Behaviour (text)
None

Justification of Design Decisions (text)

A few changesin initial source code were done to best fit HOOD4 design rules:
- Window was declared as a HOODA4 class, so code generator produces atagged type by default.
- Name of the parameter of type Window in all primitive operation declarations was set to "me".

PROVIDED_INTERFACE
TYPES

Window

type description (text)

First : coordinates of upper left corner;
Last : coordinates of lower right corner;
Current : current cursor position.

classinheritance (hood)
I NHERI TANCE NONE

type attributes (hood)

ATTRI BUTES First : screen. Position, Last
Current : screen. Position

type enumeration (hood)
ENUVERATI ON NONE

type pre-declaration (ada)
type Wndow i s private;

OPERATIONS

open

operation spec. description (text)
Pre: UpperLeft, Weight, and Width are defined
Post: returns a Window with the given upper-left corner, height, and width

operation declaration (hood)

open(
UpperLeft : in Screen.Position;
Height : in Screen. Height;
Wdth : in Screen. Wdth

) return W ndow,

screen. Posi tion,

STOOD 4.3 (c) TNI date

issue

windows Design name Company name - page 30

real time attributes (hood)
WCET

title

operation spec. description (text)
Pre: me, Name, and Under are defined
Post: Nameis displayed at the top of the window me, underlined with the character Under

operation declaration (hood)

title(
me : in out Wndow,
Nanme : in String;
Under : in Character

)

real time attributes (hood)

WCET

borders

operation spec. description (text)
Pre: All parameters are defined

Post: Draw border around current writable areain window with characters specified.
Call this BEFORE Title.

operation declaration (hood)

bor der s(
me : in out Wndow,
Corner : in Character;
Down : in Character;
Across : in Character

)

real time attributes (hood)

WCET

movecur sor

operation spec. description (text)
Pre: me, and P are defined, and P lies within the area of me
Post: Cursor is moved to the specified position.
Coordinates are relative to the upper |eft corner of me, whichis(1,1)

operation declaration (hood)
novecursor(me : in out Wndow, P : in Screen.Position);

real time attributes (hood)
WCET

put#l

oper ation spec. description (text)

Pre: me, and Ch are defined.

Post: Chisdisplayed in the window at the next available position.
If end of column, go to the next row.
If end of window, go to the top of the window.

STOOD 4.3 (c) TNI date issue

windows Design name Company name - page 31

operation declaration (hood)
put#l(nme : in out Wndow, Ch : in Character);

real time attributes (hood)
WCET

put#2

operation spec. description (text)
Pre: me, and S are defined.
Post: Chisdisplayed in the window, "line-wrapped" if necessary

operation declaration (hood)
put#2(me : in out Wndow, S : in String);

real time attributes (hood)
WCET

new_line

operation spec. description (text)

Pre: meisdefined.

Post: Cursor moves to beginning of next line of me;
lineis not blanked until next character is written

operation declaration (hood)
new line(me : in out Wndow);

real time attributes (hood)
WCET

STOOD 4.3 (c) TNI date issue

windows Design name

Company name - page 32

REQUIRED_INTERFACE

OBJECT screen;
TYPES
Hei ght; Position; Wdth;
CONSTANTS
NONE
OPERATI ON_SETS
NONE
OPERATI ONS
MoveCur sor; C ear Screen;
EXCEPTI ONS
NONE
OBJECT st andar d;
TYPES
Character; String;
CONSTANTS
NONE
OPERATI ON_SETS

OPERATI ON_SETS
NONE
OPERATI ONS
Put; New_ Li ne;
EXCEPTI ONS
NONE

STOOD 4.3 (c) TNI date

issue

windows Design name Company name - page 33

INTERNALS
OPERATIONS
erasetoendofline

operation spec. description (text)
Used to erase partially the screen.

operation declaration (hood)
eraset oendofline(ne : in out Wndow);

real time attributes (hood)
WCET

initialize

operation spec. description (text)
This HOOD operation will not be generated as an Ada procedure, but as package initialization block.
Thisresult is obtained by setting pragma "init_bloc(initialize)" when generating Ada code.

operation declaration (hood)
initialize;

real time attributes (hood)
WCET

OPERATION_CONTROL_STRUCTURES
OPERATION open IS

operation body description (text)
Instanciates a new Window named "Result"
Sets Result attributes (Current, First and Last)
Returns Resullt.

operation code (ada)
Result : W ndow;

begi n
Resul t. Current := UpperLeft;
Result. First := UpperlLeft;
Resul t. Last := (Row => UpperLeft.Row + Height - 1,

Col um => UpperLeft.Colum + Wdth - 1);
return Result;

END open
OPERATION title|S

oper ation body description (text)
Sets cursor at the beginning of first line.
Writes title string

If "Under" is blank then continue

else draw a separation line

Reduces writable area as required.

STOOD 4.3 (c) TNI date issue

windows

Design name Company name - page 34

used operations

Wi ndows. put
wi ndows. new | i ne

operation code (ada)

begi n
-- Put nane on top line
ne.Current := nme.First;
Put (e, Nane);
New Li ne(mne);

-- Underline name if desired, and reduce the witable area
-- of the wi ndow by one line

if Under ="' ' then
-- no underlining
nme.First.Row : = nme. First. Row + 1;
el se

-- go across the row, underlining
for Count in me.First.Colum..ne.Last.Colum | oop
Put (e, Under);

end | oop;

New Li ne(mne);

-- reduce witable area

nme. First. Row : = ne. First. Row + 2;
end if;

call treefrom Ada code

| (op) windows.title |-[: (op) windows.put#2 |

(op) windows.new_line H (op) windows.erasetoendofline (op) screen.MoveCursor |
(op) text_io.Put

END title
OPERATION borders|S

operation body description (text)

Draws top line border.

Draws the two side lines.

Draws the bottom line of the border.

Make the Window smaller by one character on each side.

used operations

screen. MoveCur sor
text _io. Put

operation code (ada)
begi n

-- Put top line of border
Screen. MoveCursor(nme. First);
Text _| O Put (Corner);

for Count in me.First.Colum+1 .. ne.Last.Colum-1 | oop
Text | O Put (Across);
end | oop;

Text | O Put (Corner);

-- Put the two side |ines

for Count in me.First.Rowtl .. ne.Last.Row 1 | oop
Scr een. MoveCur sor ((Row => Count, Col uim => ne. First. Col um));
Text _| O Put (Down) ;
Scr een. MoveCur sor ((Row => Count, Col unmm => ne. Last. Col umm));

STOOD 4.3 (c) TNI date

windows

Design name

Company name

- page 35

Scr een. MoveCur sor ((Row => ne. Last. Row, Col utmm =>

Text _| O Put (Down) ;
end | oop;

Put the bottom|ine of the border

nme. First. Col um));
Text | O Put(corner);
for Count

Text | O Put

end | oop;
Text _1 O Put (Corner);

Make the W ndow smal | er

ne. Fi r st
nme. Fi rst. Col um+1);

me. Last

in nme. First.Colum+1 ..
(Across);

nme. Last. Col um-1 | oop

:= (Row => nme. First. Rowt+1, Col uim =>

nme. Current := nme.First;

call tree from Ada code

| (op) windows.borders (op) screen.MoveCursor |
(op) text_io.Put

END borders

OPERATION movecursor |S

operation body description (text)
Cursor position passed as parameter is relative to window boundaries.

operation code (ada)

Rel ative to witable Wndow boundari es,

begi n

me. Current . Row

ne. Current. Colum : =

END movecur sor

OPERATION put#1 1S

:= me. First. Row + P. Row;
ne. Fi rst. Col um + P. Col umm;

operation body description (text)

If at end of current line then move to next line.

If at beginning of current line then erase the entire line.
Writes given character.

used operations
wi ndows. er aset oendof | i ne
screen. MoveCur sor
text _io. Put

operation code (ada)
begi n

if nme.Current. Colum > ne. Last. Col umm t hen

If at end of current |line, nove to next

i f nme.Current.Row
me. Current . Row :

el se

me. Current. Row :

end if;

nme. Current. Col unmm
end if;

I f at

First char,

ne. Last. Row t hen
ne. Fi rst. Row,

me. Current. Row + 1;

= nme. First. Col um;

erase |line

of course

line

by one character on each side

.= (Row => ne. Last. Row 1, Col unm => ne. Last. Col um-1);

STOOD 4.3 (c) TNI

date

issue

windows Design name Company name - page 36

if me.Current.Colum = ne.First. Colum then
Er aseToEndOf Li ne(ne) ;
end if;

Screen. MoveCursor(To => nme. Current);
-- here is where we actually wite the character!

Text | O Put (Ch);
nme. Current. Colum := nme. Current. Col unmm + 1;

call treefrom Ada code

| (op) windows.put#1

(op) windows.erasetoendofline |-|:: (op) screen.MoveCursor |

(op) screen.MoveCursor |

(op) text_io.Put

(op) text_io.Put |

END put#l
OPERATION put#2 1S

operation body description (text)
Uses put#1 to write each character of the string.

operation code (ada)
begi n
for Count in S Range | oop
Put (nme, S (Count));
end | oop;

END put#2
OPERATION new_linelS

operation body description (text)

If cursor is at beginning of alinethen first erase thisline.
If cursor ison last line then put it on first line.

Else put it on next line.

used operations
w ndows. er aset oendof | i ne

operation code (ada)
begi n
if nme.Current.Colum = 1 then
Er aseToEndOf Li ne(ne) ;
end if;
if ne.Current. Row
me. Current . Row :

nme. Last . Row t hen
nme. Fi rst. Row,

el se

me.Current. Row : = ne. Current. Row + 1;
end if;
nme. Current. Col um : = ne. Fi rst. Col um;

call treefrom Ada code

| (op) windows.new_line H (op) windows.erasetoendofline (op) screen.MoveCursor |
(op) text_io.Put

END new_line

STOOD 4.3 (c) TNI date issue

windows Design name

Company name - page 37

OPERATION erasetoendofline | S

operation body description (text)

Puts blank characters from current cursor position to the end of current line.
Current cursor position remains unchanged.

used operations

screen. MoveCur sor
text i o. Put

operation code (ada)
begi n
Screen. MoveCursor (nme. Current);
for Count in me.Current.Colum .. ne.Last.Colum | oop
Text 1O Put (' ');
end | oop;
Screen. MoveCursor (ne.Current);

call tree from Ada code

| (op) windows.erasetoendofline (op) screen.MoveCursor |
(op) text_io.Put

END erasetoendofline

OPERATION initialize| S

operation body description (text)
Clearsthe screen.

used operations

text i 0. New Li ne
screen. Cl ear Scr een

operation code (ada)

begi n
Text _| O New_Li ne;
Scr een. Cl ear Scr een;
Text _| O New_Li ne;

call tree from Ada code

| (op) windows.initialize | (op) text_io.New_Line |
1

U (op) screen.ClearScreen |

END initialize

END windows

STOOD 4.3 (c) TNI date

issue

phil Design name Company name - page 38

CLASSphil IS
ACTIVE

pragmas
PRAGVA di scri m nant
(type_nane => Phil osopher,
attribute name => --|My_ID|--)

DESCRIPTION
PROBLEM

Statement of the Problem (text)

Phil is a module describing an abstract Philosopher.
Philosophers behave autonomously as soon as they are allowed to start eating.
To eat, they need to grab two chopsticks which are shared with their two neighbours.

Referenced Documents (text)

This application is the HOOD version of "Dining Philosophers - Ada95 edition” from Michael B. Feldman, The
George Washington University, July 1995.
HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD toolset.

Analysis of Requirements

Structural Requirements (text)
SR2: type Philosopher provides an abstract description of their individual behaviour. (cf.SR2/Philosophers:)

Functionnal Requirements (text)
FR6: Let Philosophers start eating. (cf.FR6/Start_eating:)

Behavioural Requirements (text)

BR6: While eating, each Philosopher changes sequentialy itsinternal state in following order: Breathing,
Got_One_Stick, Got_Other_Stick, Eating, Done_Eating, Thinking and Dying. Change of stateis not triggered by
external requests, but by release of shared chopsticks and internal waitng delays. (cf.BR6/Philosopher_states:)

L ocal Environment

Parent General Description (text)
Please refer to parent module description.

SOLUTION

General Strategy (text)
Phil is designed as an active HOODA4 class with a single constrained operation.

Code generator will produce a package containing atask type.

Structural Description

I dentification of Data Structures (text)

SR2:

- type Philosopher with a unique attribute (My_1D) which isimplemented as a discriminant.
- type Philosopher_Ptr is a pointer to a Philosopher.

Functional Description

STOOD 4.3 (c) TNI date issue

phil Design name Company name - page 39

I dentification of Operations (text)
FR6: entry Start_Eating

PROVIDED_INTERFACE
TYPES
Philosopher

classinheritance (hood)
I NHERI TANCE NONE

type attributes (hood)
ATTRI BUTES My_I D : society. Uni que_DNA Codes

type enumer ation (hood)
ENUVERATI ON NONE

Philosopher_Ptr

type attributes (hood)
ATTRI BUTES NONE

type enumeration (hood)
ENUVERATI ON NONE

type definition (ada)
type Phil osopher_Ptr is access all Phil osopher;

States

type attributes (hood)
ATTRI BUTES NONE

type enumer ation (hood)
ENUVERATI ON NONE

type definition (ada)

type States is (
Br eat hi ng, Thi nking, Eating, Done_Eati ng,
Got _One_Stick, Got_Oher_Stick, Dying);

OPERATIONS
start_eating

oper ation declaration (hood)

start_eating(

me : in out Philosopher;

Who_ Am | : in Society.Uni que_DNA Codes;
Chopstickl : in Positive;

Chopstick2 : in Positive

)

STOOD 4.3 (c) TNI date issue

phil Design name Company name - page 40

real time attributes (hood)
WCET

OBJECT_CONTROL_STRUCTURE

constrained oper ations
start_eating CONSTRAI NED BY LSER;

REQUIRED_INTERFACE

OBJECT chop;
TYPES
NONE
CONSTANTS
NONE
OPERATI ON_SETS
NONE
OPERATI ONS
pi ck_up; put_down;
EXCEPTI ONS
NONE
OBJECT room
TYPES

OPERATI ON_SETS
NONE
OPERATI ONS
report_state; get_stick;
EXCEPTI ONS
NONE
OBJECT soci ety;
TYPES
Uni que_DNA Codes;
CONSTANTS
NONE
OPERATI ON_SETS
NONE
OPERATI ONS

OBJECT st andar d;
TYPES
Positive; Duration;
CONSTANTS
NONE
OPERATI ON_SETS

STOOD 4.3 (c) TNI date issue

phil Design name Company name - page 41

DATAFLOWS
reporting => room
usi ng => chop;

INTERNALS
TYPES
Think_Times

type attributes (hood)
ATTRI BUTES NONE

type enumer ation (hood)
ENUVERATI ON NONE

type definition (ada)

subtype Think Tines is Positive range 1..8;
Meal Times

type attributes (hood)

ATTRI BUTES NONE

type enumeration (hood)
ENUVERATI ON NONE

type definition (ada)

subtype Meal _Tines is Positive range 1..10;
Life Time

type attributes (hood)

ATTRI BUTES NONE

type enumeration (hood)
ENUVERATI ON NONE

type definition (ada)
subtype Life _Tinme is Positive range 1 .. 5;
DATA
Think_Length
data declaration (ada)

package Think _Length is new Random Generi c(
Resul t _Subtype => Thi nk_Ti nes);

STOOD 4.3 (c) TNI date issue

phil

Design name

Company name - page 42

data access from pseudo_code
(da) phil.Think _Length I'S USED BY NONE

data access from Ada code
(da) phil.Think _Length I'S USED BY NONE

data access from C code
(da) phil.Think_Length I'S USED BY NONE

data access from C++ code
(da) phil.Think_Length I'S USED BY NONE

Meal_L ength

data declaration (ada)

package Meal Length is new Random Generi c(

Resul t _Subtype => Meal _Ti nes);

data access from pseudo_code
(da) phil.Meal _Length IS USED BY NONE

data access from Ada code
(da) phil.Meal Length IS USED BY NONE

data access from C code
(da) phil.Meal _Length IS USED BY NONE

data access from C++ code
(da) phil.Meal _Length IS USED BY NONE

OPERATION_CONTROL_STRUCTURES

OPERATION start_eating 1S

used operations

roomreport_state
room get _stick
chop. pi ck_up
chop. put _down

operation code (pseudo)
chop. pi ck_up

call tree from pseudo_code

| (op) phil.start_eating H (op) chop.pick_up |

operation code (ada)
Meal Time : Meal _Tines;
Thi nk_Ti me : Thi nk_Ti nes;

begi n

Room Report _State(Wio_Am |, Breathing);

for Meal in Life Tine |oop

Room Get _Sti ck(Chopstickl).all.Pick_Up;

Room Report _St ate(Wio_Am |, Got _One_Sti ck, Chopsti ckl);

Room Get _Sti ck(Chopstick?2).all.Pick_Up;

STOOD 4.3 (c) TNI

date

issue

phil

Design name Company name - page 43

Room Report _State(Wo_Am |, Got O her_Sti ck, Chopstick2);

Meal _Time := Meal Length. Random Val ue;
Room Report _State(Who_Am |, Eati ng, Meal _Ti ne, Meal) ;

del ay Duration(Meal _Tine);
Room Report _State(Wio_Am |, Done_Eati ng);

Room Get _Sti ck(Chopstickl).all.Put_Down;
Room Get _Sti ck(Chopstick2).all.Put_Down;

Thi nk_Ti me : = Thi nk_Lengt h. Random Val ue;
Room Report _State(Who_Am |, Thi nki ng, Thi nk_Ti ne) ;

del ay Duration(Think_Tine);

end | oop;

Room Report_St at e(Who_Am |, Dyi ng);

call tree from Ada code

| (op) phil.start_eating (op) room.report_state H (da) room.T [R] |

(op) calendar.Clock

H (da) room.Start_Time [R] |

-I (op) windows.title I-[: (op) windows.put#2 I

(op) windows.new_line H (op) windows.erasetoendofline

H (da) room.Phil_windows [R] |

H (da) room.Phil_Seats [R] |

H (op) society.get_name | (da) society.Name_Register [R] |

-I (op) windows.put#1 (op) windows.erasetoendofline I

(op) screen.MoveCursor |

(op) text_io.Put

H (op) windows.new_line |

 (op) room.get_stick |— (da) room.Sticks [R] |

(op) chop.pick_up
(op) chop.put_down

END start_eating

END phil

(op) screen.MoveCursor |
(op) text_io.Put

STOOD 4.3 (c) TNI

date

issue

society Design name Company name - page 44

OBJECT society IS
PASSIVE
DESCRIPTION
PROBLEM
Referenced Documents (text)
This application isthe HOOD version of "Dining Philosophers - Ada95 edition" from Michael B. Feldman, The

George Washington University, July 1995.
HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD tool set.

L ocal Environment

Parent General Description (text)
Please refer to parent module description.

PROVIDED_INTERFACE
TYPES
Unique DNA_Codes

type attributes (hood)
ATTRI BUTES NONE

type enumeration (hood)
ENUVERATI ON NONE

type definition (ada)
subt ype Uni que_DNA Codes is Positive range 1..5;
OPERATIONS
get_name

operation declaration (hood)
get _nane(Code : in Unique DNA Codes) return String;

real time attributes (hood)
WCET

STOOD 4.3 (c) TNI date issue

Design name

Company name - page 45

REQUIRED_INTERFACE

OBJECT st andar d;
TYPES
String; Positive;
CONSTANTS
NONE
OPERATI ON_SETS

INTERNALS
DATA
Name Register

data declaration (ada)

Name_Regi ster : array(Uni que_DNA Codes) of String(1l..18)
#1 "

(" Phi | osopher ,
"Phi | osopher #2
"Phi | osopher #3
"Phi | osopher #4
"Phi | osopher #5 ");

data access from pseudo_code

(da) society.Nane_Register |'S USED BY NONE

data access from Ada code

(da) society.Nane_Register | S USED BY

(op) society.get_name [R

data access from C code

(da) society.Nane Register |'S USED BY NONE

data access from C++ code

(da) society.Nane_Register IS USED BY NONE

OPERATION_CONTROL_STRUCTURES
OPERATION get_namelS
operation code (ada)
begi n
return Name_Regi st er (Code);

call tree from Ada code

| (op) society.get_name | (da) society.Name_Register [R] |

END get_name

END society

STOOD 4.3 (c) TNI date

issue

chop Design name Company name - page 46

CLASSchop IS

PASSIVE
DESCRIPTION

PROBLEM

Referenced Documents (text)

This application isthe HOOD version of "Dining Philosophers - Ada95 edition" from Michael B. Feldman, The
George Washington University, July 1995.

HOOD adaptation was performed by Pierre Dissaux, TNI, June 1998, with STOOD tool set.

L ocal Environment

Parent General Description (text)
Please refer to parent module description.

PROVIDED_INTERFACE
TYPES
Stick

classinheritance (hood)
I NHERI TANCE NONE

type attributes (hood)
ATTRI BUTES I n_Use : Boolean := --|fal se|--

type enumer ation (hood)
ENUVERATI ON NONE

Stick_Ptr

type attributes (hood)
ATTRI BUTES NONE

type enumeration (hood)
ENUVERATI ON NONE

type definition (ada)
type Stick _Ptr is access all Stick;
OPERATIONS
pick_up

operation declaration (hood)
pick _up(me : in out stick);

STOOD 4.3 (c) TNI date issue

chop Design name Company name - page 47

real time attributes (hood)
WCET

put_down

operation declaration (hood)
put _down(me : in out stick);

real time attributes (hood)
WCET

OBJECT_CONTROL_STRUCTURE

constrained oper ations

pi ck_up CONSTRAI NED_BY RWER STATE;
put _down CONSTRAI NED_BY RWER STATE;

INTERNALS
OBJECT_CONTROL_STRUCTURE

state transition diagram

Not_In_Use \

r4

== put_down

== put_down

pick_up

‘ In_Use \

Not_In_Use

entering transitions
put _down, put_down

exiting transitions
pi ck_up, put_down

In_Use

entering transitions
pi ck_up

exiting transitions
put _down

pick_up

STOOD 4.3 (c) TNI date issue

chop Design name Company name - page 48

transition event
pi ck_up

transition from
Not I n_Use

transition to
In_Use

trans condition (ada)
not In_Use

put_down

transition event
put _down

transition from
In_Use

transition to
Not | n_Use

put_down

transition event
put _down

transition from
In_Use

transition to
Not | n_Use

OPERATION_CONTROL_STRUCTURES
OPERATION pick_up IS

operation code (ada)
begi n
In_Use := True;
END pick_up
OPERATION put_down IS

operation code (ada)
begi n
In_Use : = Fal se;
END put_down

END chop

STOOD 4.3 (c) TNI date issue

CONTENTS Design name Company name

SYSTEM_CONFIGURATION IS . . o ottt e e e e e e e e e e e e i 1

D= T o I = = 1

11 a == Vo I = 1

SIUCHURAl . . oottt e 2

FUNCE ONEl . .. e e e e 2

LISt Of REQUITEMIENES . . o oottt et e e e e e e e e e e e e e e e e 3

OBJECT PhilOSOpNErS 1Sottt e e e e e e e 4

DESCRIPTION . ..t e e e e e e e 4

PROVIDED _INTERFACEottt ettt ettt e e e e e e e e e e e e e e e e 9

OBJECT _CONTROL _STRUCTUREottt et e e e e e e e e e 9

REQUIRED _INTERFA CE . . .ottt ettt ettt e e e et e e e e e e e e e e e e e e e 9

INTERN A LS . .. e e e e e 10
END PhilOSOphers 10
OBJIECT r00M S . oot e e e e e e 11
DESCRIPTION . ..ottt et e e e e e e e e e 11
PROVIDED _INTERFACE . . .ottt et ettt e e e e e e e e e e e e e e e 13
OBJECT_CONTROL _STRUCTURE ittt ettt e e ettt et e e e e et e e e e 14
REQUIRED _INTERFACEottt ettt e e e e e e e e e e e e 14
DA T AL O S . i e 15
INTERN A LS . .. e e e e 15
EN D FO0M . . ottt e e e e e 27
CLASSWINAOWS IS . . ottt e e e e e e e 28
DESCRIPTION . ..ottt et e e e e e e e e e 28
PROVIDED _INTERFA CE . . .ottt ettt et e e e e et e e e e e e e e e e e e 29
REQUIRED _INTERFACEottt ettt e e e e e et e e e e et e e e e 32
INT ERN A LS . ..o e e e e 33
END WIiNAOWS . . . oottt e et e e e e e e e e e e e e 37
CL A S S PN IS . L e 38
DESCRIPTION . ..t e e e e e e e e 38
PROVIDED _INTERFACEottt ettt ettt e e e e e et e e e e e e e e e e e 39
OBJECT _CONTROL _STRUCTUREo ittt ettt et e e et et e e e e e e e e e e 40
REQUIRED _INTERFA CE . . .ottt ettt et et e e e e e e e e e e e e e e e e e e 40
DA T AL O S . . e 41
INTERN A LS . .. e e e e 41
EN D Pl . o e 43
OBUIECT SOCIEY IS . ottt et e e e e e e e e e e 44
DESCRIPTION . ..ttt e e e e e e a4
PROVIDED _INTERFACEottt ettt et et e e e e et e e e e e e et e e e e a4
REQUIRED _INTERFACE . . .ottt ettt e e e e e e e e e e e 45
INTERN A LS . .. e e e 45
END SOCIELY .« . o oottt ettt et e e e e e 45
LA SS ChOP IS . o ottt e e e e e e e 46
DESCRIPTION . .. e e e e e e e e 46
PROVIDED INTERFACE . . . ottt ettt e e e e e e e e e e e e e 46
OBJECT _CONTROL _STRUCTUREottt t it ettt e ettt e e e e e e ettt 47
INTERN A LS . .. e e e 47
END CNOD . . o oottt e 48

STOOD 4.3 (c) TNI date issue

