Stood *T'ni

Technology Innovation

Administrator Manual

revision A

STOOD Administrator Manual © TNI Europe - May 2005 - page 1

Pierre Dissaux

page 2 - STOOD Administrator Manual © TNI Europe - May 2005

This manual explains how to customize Stood. It is supposed here that a
standard installation procedure for the product and its license server has been
followed successfully before attempting to use Stood. Please refer to the
Installation Manual in case of any problem. Stood v5 is available for both
Unix/M otif and Windows platforms.

1 Administrator’ s customizations.....p. 5
L.1Binary fileS....coccovevieiviiciee e p 5
1.2 Configuration files...........cccevvvecueenen. p 8
1.3 Application examples............cccccueenee. p 47
1.4 Prolog enging.........cccoeeeeeveeeceesenenennns p 48
1.5 Unix interface (for Windows only)....p 65
2 User's customizations................... p. 67
2.1 Properties......ccccceeveeciee v p 67
2.2 Changing applications search path.....p 69
2.3 Customizing target languages............ p 71
2.4 Customizing the main window........... p 75
2.5 Changing default fonts and colors..... p 80
2.6 Customizing the environment............ p 84
2.7 Other simple customizations.............. p 86
2.8 Configuration management................ p 89
2.9 Requirements management................ p 92
3 Launching Stood...........cccceeenee. p. 95
3ASTShell .o p 96
3.2 Stood executing modes............ccc.e..... p 104

STOOD Administrator Manual © TNI Europe - May 2005 - page 3

page 4 - STOOD Administrator Manual © TNI Europe - May 2005

1. Administrator’ s customizations

This chapter contains usefull information to check and customize current
installation of the product on your system. Following components should be
found after a standard installation of Stood v5 on your system:

1.1. Binary files
1.1.1. Supported platforms

bi n. xxx directory contains al required platform specific binary files, where
xxX identifies actual environment among the following:

* sol 2 for Solaris2 on Sun sparc platforms.
» w32 for Windows on PC platforms.
 pclinux for Linux/OpenMotif on PC platforms.

Binaries for other platforms may be available. Please contact TNI's technical
support for further informations: st ood@ ni - wor | d. com

Please note that VM S on DEC Vax and Alpha aswell as Al X on IBM RS6000
and hpux on HP700 are no more supported.

STOOD Administrator Manual © TNI Europe - May 2005 - page 5

1.1.2. Executablefiles

Available executable files for a given platform are listed below. On Windows
platforms, all executable fileshavea. exe extension:

st ood ‘main executable to launch Stood

aadl rev éAADL syntactic analyser

Note that best way to launch Stood is not for the user to execute st ood binary
file directly inside bi n directory. It is preferable to add the bi n directory to
Unix execution path, and to launch Stood from a user's owned working
directory, or to create a shortcut for Windows platforms and to specify an
appropriate working directory in its startup property.

1.1.3. Ancillary files

A few ancillary files need to be located insidebi n directory:

st ood. eng -Stood localization file

st ood. bnp ‘optional alternate startup image

page 6 - STOOD Administrator Manual © TNI Europe - May 2005

1.1.4. Initialization file

The bi n directory also contains a default initialization file where customizable
options and parameters may be set to fit user’s preferences:

. stoodrc ‘default initialization file for Unix

stood. i ni ‘default initialization file for Windows

Other copies of these files may be created and customized inside users working
directories in order to manage several concurrent configurations. More details
about initialization files contents and customization is provided in 82.

If no other initialization file is found, Stood will use the one located inside the
bi n directory. Initidization file gathers al user's level customizations. It is
recommended not to modify the initialization file provided during a standard
installation procedure of the product. However, customized initialization files
may be created in the various working or home directories. These additional
initialization files just need to contain the actually overloaded properties. All
the other properties will be set to their default value, as defined in the bi n
directory.

Many other customization capabilities are available at administrator’'s level.
These other customizable features are located inside conf i g directory and will
be listed later in this chapter.

STOOD Administrator Manual © TNI Europe - May 2005 - page 7

1.2. Configuration files

The conf i g directory is the general container for all the platform independant
configuration files, including the documentation and code generators. Features
contained in this directory may all be customized by the administrator of the
tool. Many of these features operate like plugins, that may be added, modified
or removed with asimple "plug and play" maintenance process.

The standard configuration complies as far as possible with the HOOD
Reference Manual (HRM) release 4.0, September 1995, and has been extended
thanks to numerous feedbacks from operational users and projects. More
recently, support of Hard Real Time extensions (HRT-HOOD) as been added
to Stood, and other standards like the Architectural Analysis and Design
Language (AADL) or the version 2.0 of the Unified.Modeling Language (UML)
are now supported in the last versions of the configuration.

Several configuration directories may be defined in order to fit specific
requirements for a given Project. It is possible, for instance, to:

* define and implement specific code generation, documentation
and verification rules;

* implement communication utilities with other tools;

* customize help files,

To switch from a given configuration directory to another, Confi gPat h
property should be properly set within relevant initialization file (st ood. i ni
or . st oodr c). Refer to §82.6 for further details.

page 8 - STOOD Administrator Manual © TNI Europe - May 2005

1.2.1. Code generators

The code generators are located inside the code_ext ract or s configuration
subdirectory. There is a dedicated subdirectory for each installed code generator:

e config/code_extractors/ada Ada

e config/code_extractors/c C

e config/code_extractors/cpp C++

e confi g/ code_extractors/aadl AADL

Each of these subdirectories contains a set of files that are used by Stood each
time corresponding code generation action isinvoqued. The code generation
rules are written in prolog language. When starting code generation, Stood
produces a prolog facts base and gives the control to a prolog engine which
loads both facts and rules bases, to generate source code files (refer to §1.4).

Contents of a code generation directory is shown below. Some of these files
may be customized by the tool administrator.

Extract.pro prolog rules (source code)

speci al

extractors

pragma efinition of code extraction options

makefil e ‘to re-build code extractor if required

STOOD Administrator Manual © TNI Europe - May 2005 - page 9

More details about contents and use of these files is provided in the user's
manual. Like the other the plugins, the code generators may be updated more
frequently than the Stood kernel. To know the precise version of a code
generator, edit the Ext r act . pr o file, which header provides the date of

the last modifications.

The file extractors is used to define different profiles for the code
generation process (for instance, full or partial generation), and to specify the
configuration variables that can be used to handle the source code suffix:

Suf fi xSpecVari abl e " ADASPECSUFFI X"
defines an initialization file property in the Languages category(cf. §2.3.2).
Procedur eSpecVari abl e " $AS"

defines the corresponding pseudo variable for the DataBase file (cf. §1.2.9).

While launching Stood, a set of verifications are performed on the configuration
files. It may occur that, due to specific customizations, some unconsistencies
appear. The main issues may come from differences between the Dat aBase
file and the various configuration subdirectories it refers to. This is especialy
important for the code generators that can easily be removed or added to the
configuration directory, whereas the Dat aBase file has not necessarily be
properly updated. For instance, if the Ada code generator has been removed
from the configuration directory, but some Dat aBase sections still refer to the
Ada language, then the following warning will be shown at launch time:

£1] Stood 5 (tests) ﬁ

*** nitialization ***
Mo extractor for ada

page 10 - STOOD Administrator Manual © TNI Europe - May 2005

1.2.2. Document generators

The documentation generators are located inside the doc_extract ors and
the doc_t enpl at es configuration subdirectory. Documentation may be
produced in various format. There is a dedicated subdirectory for each installed
document generator:

» confi g/ doc_extractors/htni HTML file

* config/doc_extractors/tps Interleaf input file

* config/doc_extractors/mif FrameMaker input file
e config/doc_extractors/ps PostScript file

e config/doc_extractors/rtf MSword input file

e confi g/ doc_extractors/ pdf PDF file

Each of these subdirectories contains a set of files that are used by Stood each
time corresponding document generation is invoqued.

Document generators are written either in prolog language (those whose
directory contain apr ol og file), either using athe docBook technology (those
whose directory contain adocbook file). Note that the easyDoc technology is
no more supported. Both kinds of generators may be customized by the tool
administrator. Following files should appear in each document generator:

vari abl e. cf g definition of document variables

keepps. cfg -specifies to keep temporary graphics (optional)

STOOD Administrator Manual © TNI Europe - May 2005 - page 11

Inadditionto . cf g files, prolog document generator directories contain:

Extract.pro prolog rules (source code)

Extract.sbp prologrules (binary code)

gif %insertion of GIF graphics

Important notes:

» Thefileprinter. shisusedto send produced document to a
printer or a documentation tool. The tool administrator must
customi ze there the actual name of the printer or print spooler to
use.

* Thefileheader . xxx (where xxx may beps, t ps or nmi f), may be
edited to change the fonts to be used in the documentation.

* Other . sh files may be created to propose different printing
modes or different printersto the user. When pri nt . sh isthe
only one defined, only the file only entry is proposed in the tools
menu. When additional scripts are defined, corresponding entries
are automatically proposed in the tools menu.

page 12 - STOOD Administrator Manual © TNI Europe - May 2005

In addition to .cfg filess, docBook document generators uses the
doc_t enpl at es subdirectory that contains a customizable template for each

corresponding format.

config/doc_tenplates/portrait.rtf ‘template for Word documents

confi g/ doc_tenpl ates/portrait.style templatefor PDF documents

These files may be edited to customize the layout of the documents that are
generated by Stood for these formats.

STOOD Administrator Manual © TNI Europe - May 2005 - page 13

1.2.3. Rules checkers

The rules checkers are located inside thechecker s configuration subdirectory.
There is adedicated subdirectory for each installed code rules checker:

* confi g/ checkers/ hood design rules checker

* config/checkers/netric design metrics

e confi g/ checkers/requirenments requirements coverage
* confi g/ checkers/schedul i ng schedulability analysis
» confi g/ checker s/ dat abase design storage checker
* confi g/ checker s/ aadl AADL rules checker

Each of these subdirectories contains a set of files that are used by Stood each

time the corresponding verification action is called. Rules checkers are writtenin
prolog language. When starting rules checking, Stood produces a prolog facts

base and gives the control to a prolog engine which loads both facts and rules

bases, to generate the appropriate check reports.

Contents of a rules checker directory is shown below. Some of these files may
be customized by the tool administrator.

_Main.pro ‘prolog main rule (source code)

page 14 - STOOD Administrator Manual © TNI Europe - May 2005

These files are dupplicated for each checker plugin. In addition to these files, a
set of specific files are contained inside each checker subdirectory. The . pr o
suffix identifies the prolog source files and the .sbp suffix is used for the
corresponding prolog binary files. Only the binary file isrequired in normal use.
The source file is necessary to perform customizations in the default rules.

Specific files for the design rules checker:

General .pro (.sbp) ‘general design rules

I ncl ude. pro (.sbp)

Use.pro (.sbp)

Requi red. pro (.sbp) les for Required Interfaces

Std. pro (.sbp) ‘additional rulesfor States & Transitions

Specific files for the metric rules checker:

Cohesi on. pro (.sbp) gcohesion of the design

QO her.pro (.sbp) -miscellaneous metrics

STOOD Administrator Manual © TNI Europe - May 2005 - page 15

Specific files for the requirements coverage checker:

Cover age. pro (.sbp) §summary of coverage information

Qut put. pro (.sbp) §outputfi|efor Reqtify

Specific files for the schedulability analysis checker:

'RVA. pro (. sbp) ‘schedulability analysis

Specific files for the design database checker:

Hi erarchy. pro (.sbp) “hierarchy of components

Scan. pro (.sbp) list of filesin the database

Specific filesfor the AADL rules checker:

'Legality.pro (.sbp) AADL legality rules |

More details about contents and use of these files is provided in the userss
documentation. Like other the plugins, the rules checkers may be updated more
frequently than the Stood kernel.

page 16 - STOOD Administrator Manual © TNI Europe - May 2005

1.2.4. Tools

Even for Windows platforms, Stood uses Unix shell scripts to control the
interface between the kenel and the post-processors or the
configuration/version management system, or more simply the file storage
environment, and to easily cal remote tools. These scripts may al be
customized by the tool administrator, if required. For safety reasons, they are
stored into two different configuration subdirectories: i nt er nal Tool s and
ext er nal Tool s. Internal tools should never be removed as they are used as
gateways between the kernel and the post-processors (rules checkers, code and
document generators) and the configuration/version management system or the
file system. Contents of the config/internal Tool s configuration
subdirectory is as follow:

-called when openning a session

alled when closing a session

| ock. sh

inittrash. sh

i nfosyc. sh -called when inquiring about a System

inforoot.sh calledwheninguiring about aDesign

checkout . sh

checkl ock. sh

checkunl ock. sh called for configuration management unlock (*)

STOOD Administrator Manual © TNI Europe - May 2005 - page 17

(*) checki n. sh,checkout . sh, checkl ock. sh and checkunl ock. sh
are generic names. Severa sets of scripts may be defined to interface with
various configuration or version management systems.

The name of the actual scripts that will be used, are specified by the value of
Checkl nProcedur e, CheckQut Procedur e, CheckLockProcedure
and CheckUnl ockProcedure properties in the initidization file
(st ood. i ni for Windows or . st oodr ¢ for Unix). Standard installation
provides an interface with cvs (cvsi n. sh, cvsout . sh, cvsl ock. sh, and
cvsunl ock. sh) and a simple version management system operating by copy
(copyi n. sh, copyout . sh, copyl ock. sh, copyunl ock. sh).

The CheckQut Procedur e is used to extract a given version from the
configuration management database to the loca working area. The
Checkl nPr ocedur e isused to save the current contents of the local working
area into a given version in the configuration management database. The
CheckLockProcedure and CheckUnl ockProcedur e can be used to
manage multiple access to the configuration management database.

When called by Stood, these configuration management procedures receive the
following parameters:

“name of the application to load, lock, unlock or save.

$2 baedredtoyinthelocd workingarea.

\\

$6 filename with the list of components to be processed

The last parameter is present if the property Checkl nW t hArgFi | e or
CheckQut Wt hArgFi |l eissetto Yes.

page 18 - STOOD Administrator Manual © TNI Europe - May 2005

Unlike the interna tools, the use of external tools is optional. They may be
defined to communicate with remote tools. They can be called only from text
editors. Default contents of confi g/ external Tool s configuration
subdirectory is described below. This contents should be considered as an

example only.

\\

It is possible to send information to external tools via five parameters which
value isrelated to current selected items in used text editor.

$1 current Property file pathname (if any)

$5 current Property identifier (logical name)

For instance, the external tool i nf 0. sh isdefined as follow:

#!/ bin/sh

echo "design nane: " $2

echo "conponent nane: " $3

echo "feature nane: " $4

echo "property |logical nane: " $5
echo "property file pathnanme: " "$1"

STOOD Administrator Manual © TNI Europe - May 2005 - page 19

Result of an external tool execution is displayed in a dialog box, which contains
information sent to shell script standard output. Note that execution of an
external tool suspends Stood until its completion, except if the header of the
relevant script contains the following statement:

#! / bi n/ sh
St ood: NoWai t

In that case, the script mustn't write anything on the standard outpui.

page 20 - STOOD Administrator Manual © TNI Europe - May 2005

1.2.5. Contextual help files

A on-line help mecanism is available with Stood. It is aso fully customizable
by the tool administrator. Help facility is composed of three different parts,
each of them being stored in a dedicated configuration subdirectory:

e config/help help filesfor Stood windows
e config/ods_help help filesfor ODS sections
* config/ods_tenplate templatesfor ODS sections

Contents of hel p subdirectory isalist of files, attached to each editor or dialog
box. Help may be provided at two levels.

Information contained in these files is displayed in a dialog box when
corresponding help menu or button has been selected. A more help button gives
access to more detailed information, if any. An additional file may be created in
each case to provide this second level help. These additional files should have a
. hor e suffix.

Help filenames are directly related to window or view identifiers also used for
setting initialization file properties (refer to 82.4) or in the ST Shell language
parameters (refer to §3.1.1).

STOOD Administrator Manual © TNI Europe - May 2005 - page 21

“main window

dbconf \conflguratl on management dialog box

Additional help is provided for each section of the detailed design structure.
This is particularly useful to give proper advices about the best way to insert
information inside each section of the ODS (Object Description Skeleton).
These advices may be informative text or examples of text input that are
directly inserted at the right place. Both may be customized by the tool
administrator, by editing files contained in the ods_help and
ods_t enpl at e configuration subdirectories.

page 22 - STOOD Administrator Manual © TNI Europe - May 2005

Organization of these two subdirectories is directly related to the way
Application storage has been configured in the Dat aBase file (refer to §1.2.9).
Help and template information files are organized as any Stood Application,
but in a generic way. Each time an Application, Component or Feature name
is required to build an actual storage pathname, the reserved keyword nane is
used instead.

It is also possible to provide information for sections that are not stored in a
file, but extracted from the design model by a procedure. In this case, help and
template files will be named pr oc#, where # is the procedure number defined
inside the Dat aBase file. Many sections controled by procedure are read-only,
so that only help information is provided (no template). These help and
template files may use the following contextual pseudo-variable:

$Ho écurrent SavePath di rectory

Other pseudo-variables may be defined in the initialization file. For instance, to
use a pseudo-variable $Pj which gives the name of the project, first declareit as
follow inthest ood. i ni file:

[Vari abl es]

Pj =St ood

orinthe. st oodr c file:

Vari abl es. Pj : St ood

STOOD Administrator Manual © TNI Europe - May 2005 - page 23

Immediate contents of ods_hel p and ods_tenpl at e configuration
subdirectories refer to the first directory level (sections global to an
Application):

* name directory for second directory level (Components)
* proc# information file for procedure # (see table below)
procl listof child Components 'Read Only

Exception Flows 'Read Only

‘actual parameters for Instance_Of Generic Components

\\\

-Operation declaration

Used Operations

%propagated Exceptions

-Constrained Operations

OBCS s Implemented By

N N < R T R R R R RN RN RN RN

proc36 Required Interface (Op, Os, Ty, Co, Ex)

Operation Set definition

Type enumeration

proc47 Required Interface (Op, Ty, Co, Ex, Da)) 'Read Only

(cont. next page)

page 24 - STOOD Administrator Manual © TNI Europe - May 2005

Operation Set contents

'symbol is used by

R N O N NN S

procl76

proc199

proc220 State-Transition diagram

proc224 Transition event

proc225.

proc226 State entering Transitions ‘Read Only

proc227 origin State for the Transition ‘Read Only

proc228 destination State for the Transition

proc302 Object Real-Time Attributes

pr oc303 Operation Real-Time Attributes

STOOD Administrator Manual © TNI Europe - May 2005 - page 25

At the second directory level (sections globa to a Component),

ods_hel p/ nanme and ods_t enpl at e/ nane contain a set of files and a set
of directories:

» DOC subdirectory (help and template for Description files):

St aPr o.

—+

‘help and template files for Statement of the Problem

page 26 - STOOD Administrator Manual © TNI Europe - May 2005

e OP subdirectory (help and template for Operations):

‘help and template files for Operation spec description

name_header . u help and template for Op. Ada separate file header

T subdirectory (help and template for Types):

‘help and template files for Type textual description

A A R A LA A 1 AT T A A A A A A A A

‘help and template files for Type C++ definition

STOOD Administrator Manual © TNI Europe - May 2005 - page 27

» Csubdirectory (help and template for Constants):

nane. t ‘help and template files for Constant textual description

nane. hh help and template files for Constant C++ definition

» Dsubdirectory (help and template for Data):

name. t “help and template files for Data textual description

name. cc help and template files for Data C++ definition

» X subdirectory (help and template for Exceptions):

‘narme. t “help and template files for Exception description |

» OPS subdirectory (help and template for Operation Sets):

'name. t help and template files for Operation Set description |

e OrS subdirectory (help and template for Test Sequence files):

name_desc.t help and template files for Test sequence description

name_sequ. u help and template files for Test Ada code

page 28 - STOOD Administrator Manual © TNI Europe - May 2005

» STD subdirectory (help and template for States and Transitions):

obcs. t ‘help and template files for OBCS spec description

obcs_header. u §he|p and template files for OBCS Ada sep. file header

* files:

PRAGVA “help and templ ate files for Component Pragmas

specHeader . “help and template files for C spec file header

specHeader . ‘help and template files for C++ spec file header

bodyHeader . cc help and template files for C++ body file header

STOOD Administrator Manual © TNI Europe - May 2005 - page 29

1.2.6. lcons

Stood uses customizable icons, especialy when displaying buttons or menu
items. lcons definition files are stored in i cons configuration subdirectory.
Each icon is described by a pair of *. bnp and a *M bnp files for both
Windows and Unix platforms. It is possible to edit these files with an
appropriate utility program to change the icons, or add other icons and associate
them to some window buttons bars (refer to 82.4.2). The default list of icons

that are availableintheconf i g/ i cons configuration subdirectory is shownin
the table below:

* icons for the Component and Property lists

| ock. bnp

partially | ock.bm

@B B o

wite. bnmp
EJ v ubenpt y. bnp
Eyubpartial lyfull.bnp
By ubful . bnp
save smal | . bnp
gprint smal | . bnp
>|c'print not snall.bnp
Fcontains find text. bnp
Ffindtext.brrp
Rcontai ns rev. bm
Renable rev. bmp

di sabl e rev. bnp

page 30 - STOOD Administrator Manual © TNI Europe - May 2005

* icons for the requirements view (req)

| oad requirenents fromreqtify. bnp

|l oad requirenents fromtext.bnp or |oad. bnp
export requirements. bnp or save. bnp

new requirement . bnp

copy reference. bnp or copy. bnp

del ete requirenment. bnp

updat e cover age. bnp

hel p. bnp

* icons for the textual edition view (txt)

t ext pad. bnp
emacs. bnp
hel p. bnp

* icons for the UML graphical view (gra_uml)

print.bnp

new um conponent. bnp

new um cl ass. bnp

new um cyclic conponent. bmp
new um sporadi c conmponent. bnp
new uml protected conponent. bnp
new uml feature. bnp

new um assenbly. bnp

new um del egat e provided. bnp
new um inheritance. bnp

new um aggregation. bnp

new um del egate required. bnp
state diagramor state-transition. b
zoom in. bnp or | oupe_p. bnp

| oupe_e. bnp

zoom out . bnmp or | oupe_m bnp

hel p. bnp

STOOD Administrator Manual © TNI Europe - May 2005 - page 31

* icons for the HOOD graphical view (gra_hood)

print. bnp

show operati ons. bnp

show types. bnp

show const ants. bnp

show excepti ons. bnp

show dat a. bnp

new obj ect . bnp

new cl ass. bnp

new cyclic. bmp

new spor adi c. bnp

new pr ot ected. bnp

new feature. bnp

new set. bnp

new use connection. bnp

new i npl enent edby connecti on. bnp
new i nheritance. bnp

new aggregati on. bnp

state diagram bnp or state-transition.bnp
zoom in.bnp or |oupe_p.bnp
| oupe_e. bnp

zoom out . bnp or | oupe_m bnp
hel p. bnp

* icons for the design verification view (chk)

update cross ref.bnp or update xref. bnp
find. bmp

call tree.bnp
access tree. bnp
check design. bnp
check system bnp
aadl . bnp

ada. bnp

c. bmp

cpp. bnp

pseudo. bnp
hel p. bnp

page 32 - STOOD Administrator Manual © TNI Europe - May 2005

* icons for the code extractors view (ext)

add pragma. bnp or pragnas. bnp
full extraction. bnp

obcs extraction. bmp

body only. bnp

hel p. bnp

* icons for the code editors view (code)

reverse. bnp
hel p. bnp

check ada. bnp
check aadl . brmp

* icons for the code reversor view (rev)

previ ous change. bnp
next change. bnp
updat e. brmp

update all. bmp

hel p. bmp
* icons for the documentation view (doc)

apply. bnmp
select all.bnp
apply to all.bmp
htm . bnp

m f. bnp
pdf . bnp

ps. bnp

rtf.bnp

t ps. bnp
print.bnp
hel p. bnp

STOOD Administrator Manual © TNI Europe - May 2005 - page 33

* icons for the deployment view (vna)

sel ect design.bnp or |ogical root.bnp
check all ocation. bnp

hel p. bnp
* icons for the state transtion diagram

print. bnp

i stateum . bnp
state. bnmp
connect . bnp
event. bnp

del et e2. bnp
undel et e. bnp
| oupe_p. bnp

| oupe_m bnp
hel p. bnp

« iconsfor the call, access, design and inheritance trees

print. b
tree. bnp
list.bnp

hel p. bnp
« icons for the sketch editor

The icons shown on the buttons bar of the sketch editor cannot be customized.

page 34 - STOOD Administrator Manual © TNI Europe - May 2005

1.2.7. Http

Stood commands may be invoqued on an intranet or the internet. For Stood to
operate as an http server, the Ht t pSer ver Por t property must be properly
set in theinitialization file. If so, a connection to Stood may be established from
any http client navigator with the following URL :

http://host: port

Where;
e host: must be ahosthame where Stood runs.
« port: isthevauedefine by the Ht t pSer ver Port property.

Example:
http://server.tni-world.com 80

When the connection has been established, the list of STShell scripts located in
the confi g/ htt p configuration subdirectory may be executed. For further
information about STShell, please refer to 83.1.

Note that http is not the only protocol that may be used to send STShell
commands to Stood. A DDE port is made available automatically on Windows
and Unix, and a named pipe, named st , is automatically created on Unix only
(if not disabled by the Ser ver . Di sabl eSTShel | Pi pe property). Finally,
a STShell filename may be specified on the command line when launching
Stood.

STOOD Administrator Manual © TNI Europe - May 2005 - page 35

1.2.8. Reverse

Stood now includes full reverse engineering features for Ada, C, and AADL
source files. This reverse engineering process operates in three sequential steps.
Firstly, an appropriate syntactic analyser is used to parse the source files. Then
the semantic transformation is performed by a program written in prolog
language to produce a SIF (Standard Interchange Format) file. Finally, Stood
imports the SIF file to build the design. Theconf i g/ r ever se configuration
subdirectory contains all the files required by the second step (SIF generator
from Ada, C or AADL source files). There is a dedicated subdirectory for each
installed reverse engineering tool:

e config/reversel/ ada Ada
e config/reversel/c C
e config/reverse/ aadl AADL

Each of these subdirectories contains a set of files that are used by Stood each
time the corresponding reverse action is invoqued. The reverse rules are written
in prolog language. When starting a reverse operation, Stood produces a prolog
facts base and gives the control to a prolog engine which loads both facts and
rules bases, to generate a SIF file (refer to 81.4).Contents of a reverse directory
is shown below. Some of these files may be customized by the tool
administrator.

Extract.pro prolog rules(source code)

makefile §to re-build reverse rulesif required

page 36 - STOOD Administrator Manual © TNI Europe - May 2005

1.2.9. DataBasefile

The place where the standard Application data storage is defined is a
description file called conf i g/ Dat aBase. It may be necessary to customize
thisfile to perform following king of changes:

» Add or remove sections in the standard detailed design structure
» Add sections for new target languages (Fortran, Java, ...)

» Create or customize the textual editors

» Change the standard documentation layout

» Modify the Application storage organization

Contents of this file consists in a sequential list of records, one for each section
of any text editor. These records should comply with a precise syntax which is
described below with asimple variant of Backus-Naur Form (BNF) where:

 Plain words are used to denote syntactic rules identifiers
» Boldface words are used to denote keywords

 Square brackets enclose optional items

* Curly brackets enclose arepeated item

* A vertical line separates alternative items

(1) Dat aBase ::= { Section?}

(2)Section ::= Label® Logi cal Name* (
Secti onLevel ° [Modul eMask®]
[SectionStorage’l [Title®] [LoopProc?
DocProc® [Editor Mask!] [Chil dPropagate])

STOOD Administrator Manual © TNI Europe - May 2005 - page 37

(3)Label ::= string

Label is the string that is visible in section area of text editors. This string
value may be customized without any constraint.

(4)Logical Name ::= identifier

On the contrary, Logi cal Nanme should not be modified as it may be used by
Stood as an internal identifier.

(5) SectionLevel ::= level positive

Sect i onLevel isusedto manage section hierarchy. It is used to indent labels
in text editors, and to define a hierarchy of paragraphs in produced
documentation. Highest level is 1, and in standard configuration, lowest level is
6. Note that Modul eMask is automatically inherited from higher level sections.
(6) Modul eMask ::= when Bool eanExpressi on®

(12) Bool eanExpressi on :: = Mdul eKi nd*
{ Bool eanQOper at or ** Modul eKi nd* }

(13)ModuleKind ::=a | o| i | f | e] c

| sroot | root2 | root | leaf | constr | sif
| cy | sp | pr

(14) Bool eanQperator ::= + | . | \

The way Stood knows if a section is relevant for a given kind of Components,
isvaue of Modul eMask expression. Meaning of Modul eKi nd constantsis:

page 38 - STOOD Administrator Manual © TNI Europe - May 2005

a -Active Component

pr ‘Hard Real Time Protected Object

These conditions may be combined using following boolean operators:

LA logicad OR
\\\\\\\\\\\\\\\\\\\\\\\\\ logicd AND
\ logical NOT

(7)SectionStorage ::=
t ext pat hnane

| text procNunber

| dir pathname

The way Stood knows how to get or store information related to this section, is
specified by Secti onSt or age. Provided parameter may be either a file
pathname, either an internal procedure number.

STOOD Administrator Manual © TNI Europe - May 2005 - page 39

Each Pat hnane is specified in a generic way, using a Unix syntax (even for
DOS based platforms) and following pseudo-variables:

‘pathname of current storage directory (SavePath)

‘name of current test sequence (if relevant)

According to the standard definition of the extractors file in the code_extractors
directories (cf. 81.2.1), the following additional pseudo variables may be used to
handle source code suffix:

‘suffix for Ada specification files

‘suffix for AADL files

page 40 - STOOD Administrator Manual © TNI Europe - May 2005

Finally, other pseudo variables may be defined in the initiaization file, by
creating new entriesin the Var i abl es category. For instance, if the following
lines are added to thest ood. i ni file:

[Vari abl es]
Pj =St ood

Then, the $Pj pseudo variable can be used in the Dat aBase descriptor file. It
will be replaced by its value in every pathname where it is used.

When information is produced by an internal procedure, pr ocNunber should
be one of the following:

1 list of child Components - 21 OPCSend

20 OPCS begin 35 OBCSisImplemented By
(cont. next page)

STOOD Administrator Manual © TNI Europe - May 2005 - page 41

36 Required Interface 91 symbol isused by

ES < < NN

37 Operation Set definition 92 symbol name

93 wmbol uses

38 Type enumeration

Operations Diagram

Types Diagram

-Exceptions Diagram

Data Diagram

Parent Operations Diagram

R VTR UV

Parent Types Di agram

S 1 O N N e NN

65 Datais Implemented By

66 Operation Set Implemented By

70 Type Attributes (Ada syntax)

71 Type Attributes (C/C++ syntax)

72 Operation signature

74 Type enumeration (Ada syntax)

81 Operation Set contents

82 Type Set contents

83 Constant Set contents

84 Exception Set contents

FS O O N N .

85 DataSet contents

page 42 - STOOD Administrator Manual © TNI Europe - May 2005

(8)Title ::=
title string

| title procNunber

| title nil

Is is possible to control the string that will be used for section title in printed
documents. If Ti t | e field is missing, then Sect i onLabel will be used to
print section title. If a string constant is given, then it will be used as atitle. If a
proper procedure number is provided, then Stood will generate dynamically
title to be printed. Finaly, if ni | keyword is specified, then no title will be
printed.

(9) LoopProc ::=list LoopNunber?

(15) LoopNunber ::=90 | 92 | 95 | 96 | 1Xw®ywzs
(16)X ::=11] 2| 3| 4] 5

(17)Y ::=1| 2

(18)z ::=0] 1| 2

Some Dat aBase file sections are related to a unique entity, but to a list of
entities of the same kind. This is the case when a Feature is selected in a text
editor. LoopNunber field is used to specify which list processing is required.
Encoding is as follow:

90 list of rules checker categories

1XYZ list of Operations, Types, Constants, Exceptions and Datza

STOOD Administrator Manual © TNI Europe - May 2005 - page 43

In the latter case, X, Y and Z digits may have following values:

1 ligt of Operations
2 list of Types

(10) DocProc ::= doc DocType'

(19) DocType ::= TXT | CODE | TXTEND
| POSTSCRI PT | TABLE

A specific documentation procedure may be applied to a section. They must be
processed by each document generator. Default procedures are:

TEXT ‘plain text

page 44 - STOOD Administrator Manual © TNI Europe - May 2005

(11) Editor Mask ::= fl ags Bool eanExpressi on2*

(20) Bool eanExpression2 :: =
Edi tor1d* { Bool eanQperator* Editorld* }

(21)Editorld ::=
eCds | eAda | eC | eCpp | eAADL | eChecks | eTests

With the Edi t or Mask section field, it is possible to specify in which text
editor this section will be visible. This field may also be used to create new
customized text editorsin Stood. Standard text editors are:

§ods text editor

eTest s §t$ts text editor

To create a new text editor, the first referencing section must declare it in its
Edi t or Mask field:

flags (eNew="ny_editor’)

In this case, amy_editor text editor will be automatically added to standard text
editorsin the editors menu of the main editor.

STOOD Administrator Manual © TNI Europe - May 2005 - page 45

The last keyword may be used for special needs:

The Chil dPropagat e field provides a way to make information be
propagated along I mplemented_By links. If this field is present, then a section
of aNon Terminal Component will point to the contents of regarding section
in relevant Terminal Component, if Implemented_By relationship have been
properly set.

Example of DataBase sections:

‘operation spec. description (text)’ OpTxt
(level 5 when \root2+f list 1110
text ‘ $Ho/ $Dg/ $Oo/ OP/ $Op. t°
doc TXT flags eQds)

“operation declaration (hood)’ OpDecl
(level 5 list 1110
text 22

doc CODE flags eQds + eAda + eC + eCpp)

First section contains informal text stored in afile. It concerns all the Provided
Operations of any Component, except bounded Environments and Formal
Parametersof Generics. It will be visible only in ods text editor.

Second section contains code calculated by an internal procedure. It concerns
also Provided Operations of any Component. It is visible in ods text editor,
ada text editor, c text editor and cpp text editor.

page 46 - STOOD Administrator Manual © TNI Europe - May 2005

1.3. Applications examples

Stood standard installation contains a set of directories with afew Application
examples that may differ from a distribution to another. A typical distribution
contains:

» exanpl es: afew AADL, Ada, C and C++ examples
* |ibs: interfaces to libraries (AADL, Ada, C, C++)
e tutorial: asetof executable demonstrative scripts

To execute the tutorial scripts on a Windows platform, simply double-click on
the | esson*. sts icons located in the tutoria directory. Start with the
| essonl. st s to create anew Application, then follow the instructions.

To execute the tutorial scripts on a Unix platform, launch the following
command lines from aterminal:

stood -batch -f |essonl.sts

stood -batch -f | esson2.sts

STOOD Administrator Manual © TNI Europe - May 2005 - page 47

1.4. Prolog engine
1.4.1. sbprolog

sbpr ol og directory, contains sources and librairies of the prolog environment
developed by the State University of New York a Stony Brook
(htt p: // wwv. sunysb. edu/). If no other prolog engine is available,
sbprolog will be used to perform post-processing actions (code extraction, rules
checking, document generation).

Stood post-processors prolog source code is provided with the standard
distribution in order to let the tool administrator use another prolog
environment, if needed.

Stood doesn’t require the source files of the prolog engine and libraries to work
properly. They may thus be removed from the Stood execution environment.
However, the sbpr ol og directory should contain at least:

lib §sbpro| og library

conpile §she|| script to re-build Stood post-processors

page 48 - STOOD Administrator Manual © TNI Europe - May 2005

The executable file for the prolog engine is located into thebi n. xxx directory.
Stood aways launches the prolog engine through Unix shell scripts:

checkers/*/go.sh rulescheckers
code_extractors/*/go.sh cCodeextractors
doc_extractors/*/print.sh documentgenerator
reverse/ */ go. sh reverse engines

Each script contains at least a few statements, similar to the following:
Access path to sbprolog libraries:

SI MPATH=
" $STOCDPRA nodl i b":
"$STOODPRO | i b":
" $STOODPRQ cnpl i b"
export S| MPATH

Launching sbprolog executable file:

" $STOODBI N/ sbpr ol og"
-m $SBPROLOG M Sl ZE
-p $SBPROLOG P_SI ZE
"$1/ I nput. sbp"

STOODBI N, STOODPRO, SBPROLOG M Sl ZE and SBPROLOG P_SI ZE
environment variables are used to provide the actual location of the bi n. xxx
and the sbpr ol og directories, and to set the memory alocation guota for the
prolog engine. These variables are set in theinitialization file (refer to §2.6).

STOOD Administrator Manual © TNI Europe - May 2005 - page 49

1.4.2. prolog interface

Stood communicates with the prolog engine within a dedicated file interface.
Post-processors consists in a set of prolog rules, whereas Stood provides a set
of facts, or predicates, describing current status of the Application, and options
for the action to be performed.

A\

Stood facts pr0| og Output
base eng| ne files
rules
base

Facts base file is dynamically generated into the relevant output directory
within current Application storage area, before launching the prolog engine:

_checks/ extract. pro rulescheckers

_clextract.pro

_cpp/extract. pro

_doc/extract. pro “document generators

Note that for the reverse engineering operations, the facts base is produced by
the source code syntactic analyser in the source code directory.

page 50 - STOOD Administrator Manual © TNI Europe - May 2005

Thelist of generated prolog predicatesis:

e i sSystem(Systen).

\ System “name of the current System

* | sRoot Obj ect (Root, Ki nd, Pat h) .

Root ‘name of a Root Component in current system
Kind DESIGN, GENERIC or VIRTUAL_NODE
Pat h ‘actual pathname of regarding storage arec

* i sCurrent Root (Root) .

'Root _name of the current Root Component

* i sM ssing(Root).

'Root ‘name of a Root for which details are missing |

* i sCbj ect (Conponent, Ki nd, Parent).

Conponent name of aComponent in current hierarchy
Kind PASSIVE, ACTIVE, OP_CONTROL, ...
Par ent ‘name of parent Component in current hierarchy

* obj ect Level (Conponent, Level).

Conmponent name of a Component in current hierarchy

STOOD Administrator Manual © TNI Europe - May 2005 - page 51

* i sProvi ded(Feat ure, Ki nd, Conponent) .

Feat ure ‘name of a Provided Feature in specified Componen

Conponent name of the Component

* i sinternal (Feature, Ki nd, Conponent) .

Feat ure ‘name of an Internal Feature in specified Componen

Conponent name of the Component

* i slnmpl enent edBy(Pf, Kind, Pc, Cf, Cc, Style).

Pf ‘name of a Provided Feature of Component Pc

page 52 - STOOD Administrator Manual © TNI Europe - May 2005

e argunent (Op, ' OPERATI ON , Cop, Mbde, P, Cty, T, V, K) .

Op ‘name of an Operation of Component Cop

K BY_VALUE; BY_POINTER; BY_REFERENCE

* return(Qp,’ OPERATION , Cop, Cty, T, K).

“name of an Operation of Component Cop

name of a Type of Component Cty

BY_VALUE; BY_POINTER; BY _REFERENCE

* i sMenber O (Op, ' OPERATI ON' , Conponent , Opset) .

LS S E— ‘name of an Operation of Specified Component
Conponent name of aComponent in current hierarchy
Opset ‘name of an Operation Set of specified Component

* i sConstrai ned(Op, ' OPERATI ON , Conrponent, C, P) .

LS S E— ‘name of an Operation of specified Component
Conmponent name of a Component in current hierarchy

C STATEHSER; LSER; ASER; BY_IT; TO; ROER
P ‘value of Constraint parameter, if any

STOOD Administrator Manual © TNI Europe - May 2005 - page 53

* rai sedExcepti on(Op, ' OPERATI ON , Conponent , Exc) .

O nameof an Operation of specified Component
Corponent name of aComponent in current hierarchy
Exc ‘name of an Exception of specified Component

* i sl nstance(Conponent, I nst ance, Generi c).

Conponent name of an Instance Of Component

Generi c ‘name of regarding Generic Component

e formal Par anet er (Feat ur e, Ki nd, GCeneri c).

Feature name of aFormal Parameter of specified Generic
Kind ~ OPERATION, TYPE, CONSTANT
Generic ‘name of a Generic of current System

e actual Par anet er (Feat ur e, Ki nd, I nst ance, Val ue) .

Feature ‘name of aFormal Parameter of aGeneric
Kind OPERATION,TYPE, CONSTANT
Instance nameof anInstance Of Generic
Val ue ‘actual value for specified Parameter

page 54 - STOOD Administrator Manual © TNI Europe - May 2005

* | sSt at e(Conponent, St at e, Ki nd) .

Component name of a Component in current hierarchy

* i sTransi ti on(Conponent, Transi ti on, From To, Event).

Conponent name of aComponent in current hierarchy
Transition nameof aTransition of specified Component
From nameof origin State of specified Transition
To nameof destination State of specified Transition
Event ‘name of a Provided Operation of specified Comp.

* i sC ass(Type, Conponent).

Type ‘name of a Class of specified Component

Component name of a Component in current hierarchy

* i sAbstract (Feat ure, Ki nd, Conponent) .

Feat ure ‘name of a Feature of specified Component

Conmponent name of Component in current hierarchy

* islnherited(Qperation, Conponent).

Oper ati on name of an Operation of specified Component

Conponent name of a Component in current hierarchy

STOOD Administrator Manual © TNI Europe - May 2005 - page 55

* inherits(d ass, Cc, Supercl ass, Csc).

Cl ass ‘name of the Class of Component Cc

Csc ‘name of another Component

e attributes(Type, &, Attribute, Ta, Ct a, Val ue).

Type ‘name of a Type of Component Ct

Val ue §defau|t value for specified Attribute

e enuner ati on(Type, Conponent, El enent, Val ue) .

Type ‘name of a Type of specified Component

page 56 - STOOD Administrator Manual © TNI Europe - May 2005

* requires(Ccp, Ck, Cnod, Ssynb, Sk, Snod, Ln) .

* speci al requi res(Ccp, Ck, Crod, Ssynb, Sk, Snod, Ln) .
* unknownr equi r es(Ccp, Ck, Crod, Ssynb, Sk, Snod, Ln) .
* i sRead(Ccp, Ck, Cnod, Ssynb, Sk, Snod, Ln) .

* isWitten(Ccp, Ck, Cmod, Ssynb, Sk, Snod, Ln) .

e sel frequires(Ccp, Ck, Cnod, Ln).

Ccp ‘name of the user Feature

Ln Ioglcal name of an DataBase section

* requires(Lang, Ccp, Ck, Cod, Ssynb, Sk, Snod, Ln) .
* speci al requi res(Lang, Ccp, Ck, Cod, Ssynb, Sk, Snod, Ln).
e unknownr equi r es(Lang, Ccp, Ck, Crod, Ssynb, Sk, Snod, Ln) .
* i sRead(Lang, Ccp, Ck, Cmod, Ssynb, Sk, Snod, Ln) .

* isWitten(Lang, Ccp, Ck, Chrod, Ssynb, Sk, Snod, Ln).
* sel frequires(Lang, Ccp, Ck, Cnod, Ln).

‘name of atarget language

-kind of Feature

-name of the user Component

logical name of an DataBase section

STOOD Administrator Manual © TNI Europe - May 2005 - page 57

e description(Conponent, Fil e, Ln).

Conponent name of a Component in current hierarchy

Ln logical name of a DataBase Description section

e comrent (Feat ur e, Ki nd, Conponent, Fil e, Ln).

Feature ‘name of aFeature of specified Component
Kind OPERATION, TYPE, CONSTANT, EXCEPTION
Conponent name of aComponent in current hierarchy
File filepathname
Ln ‘logical name of a DataBase Txt section

e fil e(Feature, Ki nd, Conponent, Fil e, Ln).

Feature ‘name of a Feature of specified Component

Ln logical name of a DataBase default language sectiol

e fil e(Language, Feat ur e, Ki nd, Conponent , Fi | e, Ln).

Language name of atarget language

Ln logical name of a DataBase L anguage sectior

page 58 - STOOD Administrator Manual © TNI Europe - May 2005

* rcsl d(Header).

\ Header value of configuration management tag

e thisFile(Directory, File).

Di rectory directory containing current facts base file

Feature NIL
Kind | L
Conponent name of aComponent in current hierarchy
File prolog sourcefile pathname
Ln logical name

* al | ocat edRoot Obj ect (Desi gn) .

\ Desi gn ‘name of the logical Root to be deployed

* al |l ocat edObj ect (Node, Conponent) .

Node ‘name of aVirtual Node

Conponent name of a Component in the logical Root

* i sRequi rement (Req, Ki nd) .

Req ‘name of a Requirement

STOOD Administrator Manual © TNI Europe - May 2005 - page 59

* cover sRequi renent (Req, Ln, Conponent , Feat ure).
e derivedRequi renent (Req, Ln, Conponent , Feat ure).

Req ‘name of a Requirement

T A R A A A LA LA A A A A A A A A A A A

Feat ure ‘name of a Feature of selected Component

* hrtPeriod(Conponent, Mode, F).

e hrt O fset (Conmponent, Mode, F).

* hrt Deadl i ne(Conponent, Mbde, F).

* hrt M nArrival Ti me(Conponent, Mode, F).
* hrtPriority(Conmponent, Mode, |).

e hrtCeilingPriority(Conponent, Mode, |).
* hrtlnportance(Conponent, Mbde, S).

Conponent name of aHard Real-Time Object

|/ FI'S 1: Integer, F: Float, S: String

* hrt Wet (Conponent, Oper ati on, Mode, F) .

Conponent name of aHard Real-Time Object

page 60 - STOOD Administrator Manual © TNI Europe - May 2005

Predicates for design rules checking:

This predicate specifies which categories of rules have been selected by the
user.

e check(Category, Rul es, Resul t).

Category nameof arulescheckercategory
Rules prolog rules base file pathname for this category
Resul t -result file pathname for this category

Predicates for code extraction:

These two predicates indicates which source code files have to be generated,
and various code generation options (pr agnas).

e extract (Feature, Ki nd, Conponent, Ln, File).

Feat ure ‘name of a Feature or NIL

\\\

Ki nd 'OPERATION or NIL

‘name of a Component for which code is generated

File étarget language source file pathname

* pragma_xxx(Conponent, Param 1, .., Paramn).

Conmponent name of a Component

Param i ‘value of a pragma parameter
Note that this predicate is now also produced for the design checkers.

STOOD Administrator Manual © TNI Europe - May 2005 - page 61

Predicates for documentation generation:

These three predicates specify the list of ODS sections to be inserted into
documentation, and various user customizable generation parameters.

* pragna_doc_conf (Paranet er, Val ue) .

Par amet er name of adocumentation parameter

Val ue ‘value of specified documentation parameter

* sel ect edObj ect (Conponent) .

|Conponent name of aComponent for which doc must be create

* docSection(T,Ln,PIn,L,D Conp, Title, Contents).

T Text or File

Content s §text string (T=Text) or file pathname (T=File)

page 62 - STOOD Administrator Manual © TNI Europe - May 2005

e graphi cBox(Label , X0, YO, X1, Y1).

‘Name of a Component

Y1 “bottom right corner ordinate

e graphiclnp(Pc, Pf,Cc,Cf,View [Xi],[Yi]).

Parent Component name

list of segments ordinate

e graphicUse(Cc, Sc, View, Style, [Xi],[Yi],[Lj]).

Cc Client Component

[Lj] list of flows label

STOOD Administrator Manual © TNI Europe - May 2005 - page 63

e graphi cSt at e(Conponent, Label , X0, YO, X1, Y1) .

Conponent name of a Component with a STD

Y1l bottom right corner ordinate

e graphi cTrans(Conponent, Label ,Si,Sd, [Xi],[Yi]).

Conponent name of a Component with a STD

[Yi] %Iist of segments ordinate

page 64 - STOOD Administrator Manual © TNI Europe - May 2005

1.5. Unix interface

Stood distribution for Windows also contains a bash directory, containing a
standard Unix shell and basic commands implementation for a PC. These files
come from: http://sources.redhat.con, and are not required if
another version of cygwi n or any other implementation of the required Unix
commands has already been installed on your platform. Please note that
software contained inside the bash directory is covered by the GNU General
Public License (GPL). Refer to the RedHat web site for further details.

Executable files contained in the bash directory should be made accessible by
the user’s execution path. This can be performed by the appropriate action in
the local Windows environment, or by extending the current execution path in
thest ood. i ni initidization file (refer to §2.6):

PATH=$TOOL\ bash; $PATH

If this path is not properly set, the following alert box will be displayed when
loading an Application:

& SafeBuild/Design [Stood ... Ed

@ Cannat lock testzd10 design.

Open read only 7

Cancel |

STOOD Administrator Manual © TNI Europe - May 2005 - page 65

Stood uses only avery limited number of Unix commands. Next table provides
the minimum contents of bash directory (or other similar utility) to comply
with standard configuration of Stood shell scripts:

basenane. exe dirnane.exe nv.exe

rdir. exe

'sed. exe

diff.exe nkdi r. exe

More recent versions of cygwi n may be available. The tool administrator may
update it directly from RedHat, if required. In this case, for compatibility
reasons, it may be necessary to recompile the sbpr ol og executable file with
the new provided version of thegcc compiler, or with another compiler.

page 66 - STOOD Administrator Manual © TNI Europe - May 2005

2. User’ s customizations

Stood may be customized in many ways. Here are described only the easy-to-
change options or parameters at user's level. They are localized in the
. stoodrc (Unix) or st ood. i ni (Windows) initidization file. Both files
retain the same information, but use a different syntax.

2.1. Properties

All these options and parameters may be handled in a generic way by
properties organized in categories. To assign a value to a property in a category,
operate as follow:

* Inthe. st oodr ¢ file (Unix):

Cat egory. Propertyl: val uel
Cat egory. Property2: val ue2

* Inthe st ood. i ni file (Windows):
[Cat egory]
Propertyl=Val uel
Property2=Val ue2

These properties may also be set dynamically on the command line.
In this case, the syntax to useis as follow:

st ood Propertyl=val uel Property2=val ue2

STOOD Administrator Manual © TNI Europe - May 2005 - page 67

When same properties are set at various locations, they will be taken into
account with following priority rules:

* highest priority: command line

e user level: st ood. i ni or .st oodr c in the working directory

e intermediate: st ood. i ni inthe W ndows or W nnt directory or
. st oodr ¢ in $HOME.

* lowest priority (default values): st ood. i ni or. st oodr c inthe
bi n. xxx directory

A few internal variables are automatically set by Stood at launch time, and may
be used when assigning a value to properties. Note that these internal variables
may only be read, and should not be written. These variables are:

$TOOL ‘parent directory of current bin.xxx directory

$WORKDI R current working directory

$TOCL isthelocation of the current installation of Stood.

$WORKDI Risthe location from where Stood has been launched. It isimportant
for the user to have proper file accessrights at thislevel (r wx). When launching
Stood from a Windows shortcut, this location may be specified from
appropriate field within shortcut properties dialog box.

A few specific properties are not described in this section. Their use is
mentioned in the appropriate chapters (refer to 81.2.7 for the http server
settings, 81.2.9 for customized pseudo variables and §3.2.4 for the Unix named
pipe configuration).

page 68 - STOOD Administrator Manual © TNI Europe - May 2005

2.2. Changing Applications sear ch path

Stood Applications may be stored into several different directories and may be
visible from severa simultaneous sessions. They can now be loaded by a direct
selection of a St ood. st o file with a standard file navigation dialog box. It is
also the way an Application can now be attached to a System. The System
description files (. syc) contain the list of Applications that are attached to the
System.

For portability reasons, it is sometimes more interesting to store in the . syc
files, the Application simple names (instead of their full pathnames). In that
case, the way Stood knows where to find them is by reading the contents of the
SavePat h property intheFi | es category inthest ood. i ni or. st oodrc
file. This variable should contain a list of valid pathnames for the current file
system, with afew syntactic constraints.

It should be noted that, even on Windows, Stood uses Unix shell scripts to
perform file handling operations. It is thus prohibited to store Applications
inside directories which name contains invalid characters as regards standard
Unix files naming rules. Directory names like Program Fi | es should be
avoided.

A list of directories containing Stood Applications may be defined by assigning
a value to the SavePat h property. First path of the list will be used as a
default directory when creating new Systems. It is a good idea to put a working
directory at first position in path list. It is thus likely that proper read and write
access rights will be available when creating new Projectsand Applications.

STOOD Administrator Manual © TNI Europe - May 2005 - page 69

Example:

Inthest ood. i ni file atypica SavePat h setting would be:
[Fil es]

SavePat h=$WORKDI R, $TOOL\ exanpl es, C:\ hood\ prj 1,
\\uni x-server\hood\lib

In. st oodr c file, similar setting would be:
Fi | es. SavePat h: $WORKDI R, $TOOL/ exanpl es,
/ user s/ hood/ prj 2,/ home/ uni x- server/ hood/lib

In both cases:

* First path specifies the current working directory as default
saving areafor new Systems.

» Second path refersto an Application examples directory.

* Third path gives access to alocal saving directory.

* Fourth path gives access to aremote Unix Server.

Note that unlike the previous versions of Stood, it isnow possible to work on a
Design which location is not listed into the SavePat h. However, the
SavePat h is till mandatory to create new Systems and to solve ambiguous
pathnames in . syc files, especially while sharing a System aong an
heterogeneous Unix/Windows network. For instance, refering to the example
above, the file hoodl i b. syc will be properly loaded from both platforms,
even if it contents doesn't specify the full pathnames:

SYSTEM CONFI GURATI ON | S
ROOT_OBJECTS
--| hood/ 1 b] - -
END

page 70 - STOOD Administrator Manual © TNI Europe - May 2005

2.3. Customizing target languages

2.3.1. Specifying the default language

Stood is a multi-languages environment. Several implementation languages may
be used at the same time for a same Proj ect. That's why standard configuration
provide access to Ada, C, C++ and AADL features at the same time for any
Application. A pseudo-code is aso available to perform some specific
operations. However, a “main” language must always be specified, which will

be used by default when needed. Standard default language isAda.

It is possible to change these settings by editing Def aul t Language
property in st ood. i ni or. st oodr c file. On the same way, it is possible to
hide information related to some wunused languages, by setting
D scardedLanguages property. This last feature is mainly helpful to
minimize the number of sections appearing within textual editors. These two
properties belong to the Ceneral category. Findly, the
Mandat or yLanguages property may used to enforce the use of other
languages that the main one.

Inthest ood. i ni file, apossible setting could be:

[General]

Def aul t Language=ada

D scar dedLanguages=c, cpp
Mandat or yLanguages=pseudo

STOOD Administrator Manual © TNI Europe - May 2005 - page 71

Inthe. st oodr c file, the same setting would be:

Gener al . Def aul t Language: ada
Gener al . Di scar dedLanguages: c, cpp
Gener al . Mandat or yLanguages: pseudo

Note that default language may also be changed during an active session by
using the Change design language command of the Design menu. This new
default language will be stored with the other Application data.

It is also possible to temporarily change the default language when performing
language dependent actions (typically: updating a cross-references table or
checking design rules). These local changes are not stored with the other
Application data.

Note that when using the Update symbol tables command of the Tools menu,
the symbol tables for all installed languages will be updated (not only for the
default language).

page 72 - STOOD Administrator Manual © TNI Europe - May 2005

2.3.2. Interfacing with compilers

Stood offers advanced features to perform source code generation and reverse
engineering. These operations require some knowledge about the various
compiling environments that are available on the platform. They may have to be
customized by the tool administrator.

A few environment variables are used by some internal tools to call a compiler
after a source code generation has been completed. The ADA PATH, C_PATH
and CPP_PATH properties in the Envi r onnment category may be used to
specify the location of the compilers to be caled. This customization is not
required if the relevant pathnames have already been included in the default
execution path of the system.

Another environment variable is proposed to customize the command line of
the C reverse engineering pre processing. It is generally necessary to include a
few additional options for thr C pre processor to find the appropriate header
files that are included to the source files that are to be reversed. The
REVERSE_OPTI ONS property in the Envi r onnment category must be used
for this purpose:

Envi ronnment . REVERSE_OPTI ONS: - | / usr/ X11R6/ i ncl ude

STOOD Administrator Manual © TNI Europe - May 2005 - page 73

The Languages category may be used to customize the source file suffix for
the various languages that are supported by Stood. The default values are:

PSEUDOSPECSUFFI X

AADLSUFFI X

Note that the name of these properties for each language may be changed in the
extractors file of the confi g/ code_extractors configuration
subdirectory, and their value are also used by the language suffix pseudo
variablesin the DataBase file (refer to §1.2.9).

When Stood generates source code, the previously generated files are cleaned up
from the target directory. However, in the case of a partial generation of the
code, it is necessary to specify which files mustn't be removed (as they won't

be generated again). The NoCl eanUpFor property in the Languages

category is used to specify the name of a code generation pragma. If this
pragmaisallocated to a Component (or a set of Components) during the code
generation process, then the corresponding source files won't be cleaned up. By
default, the pragma except is used to identify the Components that musn't
be generated, and thus which files musn't be cleaned up.

page 74 - STOOD Administrator Manual © TNI Europe - May 2005

2.4. Customizing the main window

Unlike the previous versions of the tool Stood 5.0 concentrate most of its
features in a unigue main window. However, this window shows various views
that are controlled by a set of tabs. Each view provides a different button bar. It
is possible to customize the name and the button bar of each view by editing the
stood. i ni or.stoodrc file In addition, default location and size of the
main window on the screen may be predefined:

For this purpose, each view must be referenced by its predefined identifier:

req requirements editor view

vna ‘design allocation editor view

Note that it is no more possible to customize the button bar for the State
Transition Diagram editor (st d), the inheritance tree (hi e) and the call and
access trees (ut r), and the following windows don't exist any more due to the
new layout, it is thus no more needed to define a button bar for the previous
main window (mai n), the previous system editor (syc), the previous cross
references window (cr f), which has been inserted into the design verification
view and the previous documentation schemes window (sch), which has been
inserted into the documentation generator view.

STOOD Administrator Manual © TNI Europe - May 2005 - page 75

2.4.1. Customizing view names

The Vi ews category can be used to specify a name to each tab of the main
window. This may be useful to better fit aternate software development
standard terminology. The property names are the view identifiers that are
specified in the previous paragraph, except for the HOOD and UML graphical
editors that are controlled by a unique tab that must be referenced with the
identifier gr a.

Note that any renaming of these tabs also impacts the corresponding Tools
menu items. Take care to consider these changes in ST Shell scripts respect, as
they may use these tab names and menu itemsin their command parameters.

The defaults for tabs are the following:
inthest ood. i ni file

[Vi ews]

reg=Requi rement s

gr a=G aphi ¢ Desi gn
t xt =Det ai | ed Desi gn
chk=Checkers

ext =Code
doc=Docunent ati on
vna=Depl oynent

inthe. st oodr c file:

Vi ews. req: Requi renent s
Vi ews. gra: Graphi ¢ Desi gn
Vi ews. t xt: Detai |l ed Design

page 76 - STOOD Administrator Manual © TNI Europe - May 2005

2.4.2. Customizing buttons

The But t ons category can be used to customize the button bar for each view.
The property name is the identifier of the view as they are defined in the table
above. The syntax to be used to specify a button bar is similar to the one used
in the previous versions of Stood. However, the previous definitions are no
more relevant as the references to menus are completely different. Another
difference isthat a procedure number may be given instead of a menu reference.
This is especially necessary to differenciate contextual create actions from the
generic ones that are provided in the menu. With the former ones, user
interaction is required, not with the latter ones. The list of valid procedure
numbers for button bar definition is provided below.

Syntax of abuttons bar definitioninast ood. i ni file:

[But t ons]
vi=L11,Mm1,111,...; ... ;L1In,Mn,I1n,...
VmeLnl, ML, I, ...; ... :Lmm,Mm,Im,...

Syntax of abuttons bar definitionina. st oodr c file:
Buttons. V1:L11, M1,111,...; ... ;Lln,Mn,I1n,...
Buttons. Vm Lo, M, Ipd,...; ... ;Lm, Mm, Im,...

Where;

Lij label to be displayed in the button bar baloon

osition of the menu in the menu bar or procedure number

_position of the item in the menu, followed by submenusif any

STOOD Administrator Manual © TNI Europe - May 2005 - page 77

Notes.

- Additional semi-colons may be used to increase separation space.

- When alabel beginswith a* , then the icon of the same name (refer to §81.2.6)
will be displayed instead of the label name.

The list of procedures that may be used in buttons bar definitions is the
following:

proc501 new HOOD object

proc530

proc540.

proc603

proc604

proc644 new UMVL delegate required

page 78 - STOOD Administrator Manual © TNI Europe - May 2005

2.4.3. Customizing default position, size and zoom

The default position and size of the main window as well as zooming
parameters and default size of graphical boxes may be specified in the W ndow
category. The definition of the Posi ti on, Ext ent and NewBoxExt ent

properties must comply with the following syntax:

X axis_coordinate, Y _axis_coordi nate

Where coor di nat es are specified in pixel. Point (0,0) is located at the top
left corner of the screen.

Notes:

- Posi t i on property specifies top left corner location of the window.

- Ext ent property specifies bottom right corner location of the window.

- NewBoxExt ent property specifies the default size of newly created boxes.
- negative values are allowed.

The zooming options of the graphical views may be customized by the
I nitial Zoomand Zoom ncrenent properties in the W ndow category.
Their value must be given in percentage. It may be useful to change these values
due to best fit the resolution of the screen.

STOOD Administrator Manual © TNI Europe - May 2005 - page 79

2.5. Changing default fonts and colors

It is possible to configure a few fonts and colors that are directly controled by
Stood. This configuration will be performed by setting a few properties inside
thest ood. i ni or. st oodr c file. These properties belong to the Font s and
Col or s categories respectively. On Unix platforms, the M otif widgets that are
used by Stood can aso be customized. The corresponding resources must
simply be overloaded in the. st oodr c file.

2.5.1. Customizing fonts

Properties name for fonts customization are:

Def aul t Font font to be used by default.

CODE éfont to be used in code sections.

The vaue for f ont properties must be a valid font name and size that is
available on the current platform. All the other fonts (menus, lists, ...) are
controled by the window manager, and should be customized by any
appropriate procedures in Windows control panel or Motif ressource files. On
Unix workstations, a St ood Motif resources file for Stood may be optionally
created in any of these locations (none is provided with the standard
distribution):

e Jusr/lib/X11/ app-defaul t s/ St ood
* $APPLRESDI R/ St ood
* bi n. xxx/ St ood

page 80 - STOOD Administrator Manual © TNI Europe - May 2005

It is also possible to introduce Motif resources directly inside the . st oodr c
initialization file to control the widgets appearance, as shown in the example
below.

Example:

A possible st ood. i ni font configurationis:

[Font s]

Def aul t Font =Arial 9

D agr anfont =Com ¢ Sans Ms 10
TreeFont =Comi ¢ Sans Ms 10
TEXT=Ti mres New Ronman 12
CODE=Courier New 12

A possible. st oodr ¢ font configuration is:

Font s. Def aul t Font : hel vetica 12
Fonts. Di agranfont:tines 12
Fonts. TreeFont:times 12

Fonts. TEXT:tines 14

Font s. CODE: couri er 14

*fontLi st: -adobe-hel vetica-nedi umr-nornma
--10-100- 75- 75- p- 56- i s08859- 1

*XmText *f ont Li st: -adobe- hel veti ca- medi umr - nor na
--10-100- 75- 75- p- 56- i s08859- 1
*XmText Fi el d*font Li st: -adobe-hel vetica-nmedi umr-
nor mal - - 10- 100- 75- 75- p- 56-i s08859- 1

STOOD Administrator Manual © TNI Europe - May 2005 - page 81

2.5.2. Customizing colors

Property names for color customization are:

-Component box in the HOOD diagrams

\\\

Transition Transition in the State-Transition Diagrams

Transi ti onLabel labelson Transitionsin the S-T Diagrams

The value for a color property must be a valid RGB code. Most commonly
used codes are:

All other combinations are of course possible. It is aso possible to customize
Motif resources inside the . st oodr ¢ initiadization file, or inside a dedicated
file, to control the widgets appearance, as shown in the example below.

page 82 - STOOD Administrator Manual © TNI Europe - May 2005

Example:

A typical st ood. i ni color configuration is:

[Col or s]

Modul e=0 0 128

Modul eExport =192 192 192
Conponent =0 0 255
ConnectionUse=9 117 18
Connecti onl npl =255 153 0
Connecti onLabel =0 0 128
State=0 0 128
Transition=255 0 O
Transi ti onLabel =0 0 255

The corresponding . st oodr ¢ color configuration is:

Col ors. Modul e: 0 0 128

Col ors. Modul eExport: 192 192 192
Col ors. Conponent: 0 0 255

Col ors. ConnectionUse: 9 117 18
Col ors. Connectionl npl: 255 153 0
Col ors. Connecti onLabel : 0 0 128
Colors. State: 0 0 128

Col ors. Transition: 255 0 O

Col ors. Transi ti onLabel : 0 0 255

*OverrideShel | *background: LightYell ow
*XmText *background: Wite
*Xmrext Fi el d*background: Wite

*Xmli st *background: Wite

STOOD Administrator Manual © TNI Europe - May 2005 - page 83

2.6. Customizing the environment

A few properties may be changed to customize the standard configuration and
execution environment of Stood. Changing these properties requires a good
knowledge of the way Stood works. It is generally the responsability of a
system administrator to customize these properties, if needed.

Vaue of the property Conf i gPat h inthe Fi | es category can be modified to
let Stood point to another configuration directory. Default value is
$TOOL/ confi g, that is the confi g directory located in the same parent
directory asthe current bi n. xxx directory.

When using its internal or external tools, Stood needs to launch Unix shell
scripts (even under a Windows environment). The Shel | property in the
Shel | category must be set to specify which shell is to be caled. Default
values are sh for Unix and bash for Windows. An additional property
specifies whether the shell command window must be displayed or not. Default
isYes for thisH deW ndow property.

A few Unix environment variables are required by Stood post-processors (rules
checkers, code extractors, documentation generators). These variables may be
directly set within the Environment category. Defaults values are
$TOOL/ shpr ol og for the STOODPROVvariable, and $TOCL/ bi n. xxx for the
STOCDBI Nvariable.

page 84 - STOOD Administrator Manual © TNI Europe - May 2005

Additionally, the SBPROLOG M SI ZE and SBPROLOG _P_SI ZE variables
may be set to specify the memory allocation requirements (in bytes) for the
prolog engine that is used by the post-processors.

Note that other Unix or Windows environment variables may bet set if
required. For instance, it may be necessary to extend the execution path to give
access to specific executable files:

PATH=$TOOL\ bash; $PATH

Licensing information is also specified by several properties belonging to
Li censi ng, Li cense or Fl exLM categories. Please refer to Installation
Manual or contact your system administrator or TNI Europe's technica
support if you need to set or change these properties. Please note that these
three categories are exclusive, and mustn't be set together:

[Li censi ng]

Organi zati on=Eval uati on
Li censee=None

Li censeCount =1

Mode=Ful

Expi rati onDat e=31/ 12/ 2004
Passwor d=6227029

[NFL]
Fi | e=\\ host nane\t ool s\|i cense\ st ood. nfl
Rel easeDel ay=1440

[Fl exLM
Fil e=\\ host nane\t ool s\|license\li cense. dat

STOOD Administrator Manual © TNI Europe - May 2005 - page 85

2.7. Other simple customizations

A set of other properties may be used to customized various additional features
of Stood.

o thewel come property in the Gener al category specifiesthe
string to be displayed on top of main editor. The default valueis
St ood 5. 0. It isan easy way to identify a particular
configuration.

* the ShowDi r ect ori es property inthe Gener al category
specifies whether Project and Application names should be
displayed by default with their full storage pathname or not.
Vauesare Yes or No. This property may be changed locally
during the session.

» the G- aphRepresent at i on property inthe Gener al category
specifies whether the trees must be displayed as a textual lists, or
agraphical trees. Valuesare Li st or Tr ee.

* the G aphSi zeLi ni t property inthe Gener al category specifies
the maximum size of atreeto be printed graphically in the design
documentation. For readability reasons, al the trees which size
exceed this limit will be inserted textually in the documentation.

 the Def aul t Gr aphi cs property inthe Gener al category
specifies the default graphical notion for the architectural
diagrams. Values are HOOD or UM...

page 86 - STOOD Administrator Manual © TNI Europe - May 2005

» the Def aul t property inthe doc category: specifies which
documentation format will be set by default when opening a new
documentation editor. This default value may be changed locally later
during the session. Possible values depend on actually installed
document generators, typically: rtf, ps, mi f, ht nl , pdf .

 the Uni queNaneSpace property inthe Gener al category
specifies if multiple namespaces are allowed in the code or not.
By default, each HOOD Component defines a separate namespace.

 the Enabl eSTShel | Menu property inthe Securi ty category may
be used to invalidate the STShell item in the Windows menu of the
main editor to forbid the execution of STShell commands for
security reasons. Default valueis Yes.

 the Mar kExpor t edModul e property inthe Gener al category
defines whether a Component keeps its exported attribute or not in
the original Design. When set to Yes, the corresponding box has
greyed borders when the Component has been exported. Default
valueis Yes.

* the Conpl et eCr ossRef er ences property in the Gener al
category controls the way symbol tables are stored and call trees
are drawn. When set to No, symbol tables and call trees are
similar to those of the previous versions of Stood. When set to
Yes, all the occurences of calls are stored and call trees show
accessed Data via Operation parameters. Default is Yes.

STOOD Administrator Manual © TNI Europe - May 2005 - page 87

» the Repl aceDashBy property inthe Gener al category givesthe
replacement characters for dash characters found inside a SIF
filename when associating it to a Root Component name. Thisis
especially useful while reversing Ada code containing child units.
Default is the underscore character.

» the Enabl eFi r st Under scor e property in the Gener al category
allows symbols with an underscore as their first character to be
recognized in the symbol tables. Thisisallowed in C but not in
Ada. Note that the corresponding lexical analysers must follow the
same rule. Default is No.

» the KeepPseudoPr ef i x property inthe Gener al category
activates the processing of the dot notation in Pseudo code
sections (like in Ada code sections). Default is No.

e theDirectoryEdi t property of the Gener al category is used to
specify which application must be launched to display the
contents of the directories from the Tools menu. Default is
expl or er. exe on Windows and an appropriate xt er mcommand
on Unix.

» the St at usTi meQut property of the Gener al category specifies
the duration of the red display of a new error in the status bar.

page 88 - STOOD Administrator Manual © TNI Europe - May 2005

2.8. Configuration management

Stood database can't manage directly different configurations or versions of a
same Application, but may interact with external configuration and version
management systems. Two kinds of interfaces are proposed: identification tags
and checkin/checkout procedures

2.8.1. Identification tags

It is possible to ask Stood to automatically insert an identification tag in all the
files that are stored in an Application database for configuration management
purpose. The tag must be added manually for the files that are edited by hand.
In the other items, the tag will be included automatically, and between
appropriate comment separators if necessary. A generic tag value may be
specified in the Header property of the Ver si oni ng category. Default
values are blank to specify that no tag has to be inserted, or $Header $ else.
Thistag may be processed by configuration management systems likeRCS.

2.8.2. Checkin/checkout procedures

Shell scripts may be customized to interface with configuration management
systems like CVS. These scripts are stored in the conf i g/ i nt er nal Tool s
configuration subdirectory. As several concurrent interfaces may be present, the
actual scripts to use for a given session are specified by the following properties
of the Conf i gur at i onManagenent category:

Checkl nProcedur e from local space to conf. management aree

CheckUnl ockPr ocedur e unlock in the conf. management arez

STOOD Administrator Manual © TNI Europe - May 2005 - page 89

save
St ood

| oad

checkin

config.
managenent
area

checkout

When a Design, a Component or a Property is loaded, relevant files contents
are copied from the local working disk area to the Stood memory. When a
Design, a Component or a Property is saved, data is stored into the
corresponding files in the local working disk area. If a Design or a Component
is loaded in read-write mode, then a lock file (St ood. | ok) is created in the
local working area

During a session, the local working disk area and the Stood memory will be
updated by the contents of the configuration management area, when a Design
or Component checkout menu command is used. Similarly, the configuration
management area, and the local working area, will be updated by the current
contents of the Stood memory, when the Design or Component checkin menu
command is used. If the lock checkbox of the checkout or checkin dialog is set,
thenthecheckl ock or checkunl ock scriptswill be aso activated.

page 90 - STOOD Administrator Manual © TNI Europe - May 2005

The Conf Myr Act i vat ed property in the Fi | e category may be used to
activate or deactivate the use of the configuration management scripts at a
Design level. When the scripts are activated, the name of the configuration
management system to which Stood is interfaced, may be specified in the
Conf Mgr Label property of theFi | e category.

For the configuration management interface to also work at a Component level,
the property Conf Mgr Modul ar in the Fi | e category, must also be set to
Yes. In that case, due to the hierarchica structure of the model, a single
checkout or checkin command may generate a sequence of call of the respective
scripts, one for each Subcomponent. An option consists in calling the script
only once, and send the list of concerned Subcomponentsin afile, which name
is stored into the last parameter passed to the script. To activate this last
option, the CheckQut Wt hAr gFi | e and Checkl nWt hArgFi | e in the
Conf i gur at i onManagenent category must be set to Yes. Default is No.

Version labels may be defined in the Versions property of the
Confi gur at i onManagenent category. The label, that must be selected in
the appropriate dialog box, may be used to select or save agiven version.

When CVS is used, the configuration management information is stored in a
CVS subdirectory located in each directory of the Application database. To
prevent Stood to ater this information, the CheckKeepi ngFi | es property
of the Conf i gur at i onManagemnent category must be used.

Note: The configuration management interface at a Component level is a new
feature of Stood 5.0. When using older configuration files, the required
COVPONENTTRASHDI RECTORY section in the Dat aBase descriptor file may
be missing. In that case, please contact the technical support.

STOOD Administrator Manual © TNI Europe - May 2005 - page 91

2.9. Requirements management

Stood may load a list of requirements from REQTIFY, the requirements
traceability tool of the SafeBuild suite. In addition, the lexical definition of a
requirement or a reference to a requirement may be customized for the current
Proj ect.

The REQTI FY_PATH property in the Envi r onnent category must be used
to set an environment variable to be used in the reqti fy. sh shell script
located in the confi g/ i nt ernal Tool s configuration subdirectory. This
script cals REQTIFY to get the proper list of requirements. The path must
specify the actual location of the main executable file for REQTIFY.

Most requirements will be loaded from the previous requirements analysis
tasks. Definition of a new requirement during the design process, will be a
derived requirement, and its syntax must be specified with the Defi ne
property of theRequi r enent s category.

Design entities must cover requirements. To define the syntax of areferenceto a
requirement, the Ref er ence property of the Requi r ement s category must
be used. Both Def i ne and Ref er ence properties must be specified with
standard regular expressions. Note that the \ escape character must be
dupplicated inthe . st oodr c file.

The | gnor eCase property of the Requi r enent s category specifies if the
recognition of requirements must be case sensitive or not, and the
Cat al ogSuf fi x property of the Requi r enent s category gives the default
suffix for the file selector when importing requirements. Possible values are
.t xt for plaintextfilesor. rqt f for REQTIFY projects.

page 92 - STOOD Administrator Manual © TNI Europe - May 2005

Example:

If the requirements analysis process of the project defines a list of requirements
of the following form:

REQ 001
REQ 002
REQ 003

And the coverage of arequirement in the design is defined by acf . REQ xxXx
expression, and the definition of a derived requirement by a def . REQ yyy
expression, then the Defi ne and Ref er ence properties could be set as
follow:

inthest ood. i ni file

[Requi r enment s]
Define=\(def\.(REQ[™\)]H))\)
Ref erence=\(cf\. (REQ [M\)]+)\)

inthe. stoodrc fil e:

Requi renent s. Define:\\ (def\\.(REQ[M\)]+)\\)
Requi renents. Reference: \\ (cf\\. (REQ [M\\)]+)\\)

STOOD Administrator Manual © TNI Europe - May 2005 - page 93

page 94 - STOOD Administrator Manual © TNI Europe - May 2005

3. Launching Stood

Stood may be started in four different modes:

* interactive mode (usual mode)
* semi-interactive mode

 batch mode

» remote control mode

The interactive mode is the only one which requires interactive use of aterminal
keyboard and mouse. With the three other modes, Stood can be controled by a
sequential list of instructions. These instructions must be written with a
specific syntax, in a language caled STShell, and define an Application
Programming Interface (API) for Stood.

When Stood is started, an instance of the main window is shown on the screen.
It gives access to the full range of menus, selections and graphical actionsthat is
necessary for an interactive usage of the tool. Please refer to the appropriate
contextual help or user's documentation to get information about the use of
Stood in interactive mode.

STOOD Administrator Manual © TNI Europe - May 2005 - page 95

3.1. ST Shell

A STShell instruction is a command to be executed by Stood, and generaly
includes alist of parameters. Its general syntax is:

Command(" par anmeter 1", "paraneter2",...)

ST Shell expressions may be either inserted sequentially in macro-commands
files (files with a suffix . st s), either be sent directly to an active session of
Stood, in remote control mode.

3.1.1. STShell parameters

Parameters are always strings delimited by double quote characters. These
delimitors may be omitted in following cases:

o for simpleidentifiers: {[a..z]|[A .Z]|[0..9]}
« for integers

The use of the * wildcard character is allowed. It replaces any sequence of
characters. Take care to avoid its use when there is arisk of ambiguity.

Parameters may need to reference a specific window or view of Stood
(browsers, graphical editors, dialog boxes,...). In this case they must match
relevant window predefined identifier. Following table provides the list of
recognized identifiers.

page 96 - STOOD Administrator Manual © TNI Europe - May 2005

mai n ‘main window

dbobj | a

dbconpare

| ast last opened window

The parameters may also need to reference a list in a browser. Each list is
identified by an integer.

Notes:

- Only one window of each kind may be referenced at a time within a sequence
of STShell instructions.

- All the parameters referencing a menu, amenu item, alist, alist element and a
button name should match exactly the name shown by the Stood windows.
However, space characters at the beginning or the end and suspension points in
menus may be avoided

STOOD Administrator Manual © TNI Europe - May 2005 - page 97

3.1.2. STShdll instructions

The following instructions are available to build STShell programs. These
commands generally represent a basic interaction with windows components
(lists, menus, buttons,...). A few commands represent a higher level command to
perform a predefined list of lower level actions.

* Exec("fil enanme") : execute STShell program contained in file
given as parameter. Thisfile should contain alist of valid STShell
instructions.

e Context("project","application"[,"conponent"]) : select
the given Project and Application, and optionally the given
Component in the top left selection list of the main window.

* Feature("feature"[,"property"]) : select the given Feature,
and optionally the given Property in the bottom left selection list of
the main window. A Feature must be an Operation, Type, Constant,
Data, State, Transition Or a checker rule category

* Property("property"[,"feature"]) : select thegiven
Property, and optionally the given Feature in the bottom left
selection list of the main window. A Property must be referenced by
its logical name, as defined in the DataBase descriptor file (refer to
81.2.9)

page 98 - STOOD Administrator Manual © TNI Europe - May 2005

e Menu("id","menu","iten[,"subitens"]) : executeagiven
item of awindow menubar.

id ‘window identifier (usually: main)
meny Menunameinwindow menubar
item em name or position integer index inmenu
subi tens Itemsinsubmenus, if any

« Menu("id","nmenu","itend, "box", X1, Y1, X2, Y2) : create a
new box at the specified coordinates in the given graphical editor.

id ‘window identifier (gra_hood, gra_uml or std)

Y2 ‘bottom coordinate

e Menu("id","menu","item[,"subitens"],"C'[,"F"]) :
create a new connection, to specified destination.

id ‘window identifier (usually: main)
menu M enunameinwindow menubar
item onnexion creation Item name in menu

estination Component or State for the connexion

‘destination Feature in destination Component, if an

STOOD Administrator Manual © TNI Europe - May 2005 - page 99

e ListSelect("id",list,"element") :select the given element
inalist of awindow.

id windowidentifie
list listindex (1, if thereisonly onelist)
el ement Element name or position integer index in the list

e ListMenu("id",list,"itend[,"subitens"]) : executea
given item, or its subitem if any, of a contextual menu in alist of
awindow.

id ‘window identifier

list listindex (3, if thereisonly onelis)
item itemnameincontextidmenu
subi tens itemsin submenus, if any

* Answer ("val ue") :fill inan active dialog box with the given
string.

e Adick("id","label") :“press’ abuilt-in button of awindow.
This instruction should not be used for customizable buttons
within awindow button bar. In this case, use the But t on
Instruction.

id ‘window identifier

* &k, Cancel, Yes, No:“press’ corresponding buttonina simple
dialog box. May be used as shortcutsfor d i ck(I ast, ok), ...

page 100 - STOOD Administrator Manual © TNI Europe - May 2005

e Systen("0S command") : executes specified external command,
which is supposed to be recognized by current executing
environment.

* Del ay(duration) : wait for the specified number of seconds.

e Show(x,y,"text",duration) :display the given text at the
given coordinates during the given number of seconds. The origin
isthe top left corner of the screen.

* BoxSel ect ("id","box"[,"feature"]) : select the specified
box (Component or State) or its specified Featureif any, in the
given graphical editor.

id ‘window identifier (gra_hood, gra_uml or std)

feature optional Operation, Type, €tc...

e Wite("id","text") :writethe specified text in the currently
selected text input area of the current view. Use the Cont ext and
Property instructionsfirst, to select the right text input area.

id ‘window identifier (txt)

STOOD Administrator Manual © TNI Europe - May 2005 - page 101

e Use("id","origin","dest","dir1","dir2") : draw aUse
relationship between the two specified Components.

id ‘window identifier (gra_hood or gra_uml)

dir2 %directionatd&ctination: N,E,Sor W

« I nmpl ement edBy("id","origin","dest","child") :draw an
Implemented_By relationship between the specified Featuresfrom
the current parent Component to the specified child Component.

id WI ndow identifier (gra_hood or gra_uml)

child -child Component name

Note: The STShell commands Button and TabSel ect are no more
supported. This is due to the new layout of the main windows and to the
reorganization of the main menu bar.

page 102 - STOOD Administrator Manual © TNI Europe - May 2005

3.1.3. STShell program example

BATCH CODE GENERATI ON EXAMPLE
stood v5.0 - TNl Europe - August 2004

Select "test" design inside "tests" system:
Context (tests, test)

#

Select the "code" viewin the "main" w ndow :
Menu(mai n, t ool s, vi ew, code)

#

Launch the code generation :

Menu(main, tool s, code, "full extraction")

Cl i ck(dbobj, OK)

#

Show "extraction nmessages"

Property("ada:: Extract Messages")

#

Open a renote editor on that file :

Menu(mai n, tool s, "external tools", emacs)

#

Quit stood :

Menu(main, file,quit)

Other macro-commands examples may be found in t ut ori al directory,
provided with standard distribution.

STOOD Administrator Manual © TNI Europe - May 2005 - page 103

3.2. Stood executing modes

In order to be able to launch Stood, first check that used Windows shortcut or
Unix execution path is set properly. They should point to Stood binary files
directory (refer to 81.1)

3.2.1. Interactive mode

When launching Stood without any option, an interactive session is started.
The tool may thus be controled with the keyboard and the mouse of user's
terminal. In interactive mode, alicense token is used for each active session. To
launch Stood in interactive mode, just double-click on relevant Windows
shortcut or, on your Unix terminal, enter:

st ood

To open Stood on an existing System (file with .syc extension), enter:
stood -s filenane. syc

To open Stood on an existing Root (file with .sto extension), enter:
stood -r filenane.sto

3.2.2. Semi-interactive mode

This mode is useful to preset Stood in a predefined configuration, and then let
the user go on working in interactive mode. Predefined configuration should be
described by a sequence of ST Shell expressionsin a. st s file. The user may
thus launch:

stood -f filenane.sts

page 104 - STOOD Administrator Manual © TNI Europe - May 2005

3.2.3. Batch mode

The aim of this executing modeisto let Stood perform actions without any user
direct interaction. It is typically the way to launch code and documentation
generation for a stored Application. This mode also requires a ST Shell
command file, to describe operations to be performed, but unlike semi-
interactive mode, no license token is required, and Stood will close
automatically at the end of the commands sequence. To launch Stood in batch
mode, enter:

stood -batch -f fil enane. sts

Note that for implementation reasons, on Unix platforms, the DI SPLAY
environment variable should be set, even in batch mode.

3.2.4. Remote control mode

On Unix platforms, it is possible to send STShell commands to an active
session of Stood. An input named pipe is automatically created when Stood is
launched. This pipe is aways named st and is located in current working
directory.

ST Shell expressions may then be sent to this file with usual Unix commands:

echo ‘ Cont ext (project,application)’ > st

echo ‘ Menu(nai n, tool s, vi ew, "graphi c design")’ > st
echo ‘ BoxSel ect (gra_um , box)’ > st

cat macros.sts > st

STOOD Administrator Manual © TNI Europe - May 2005 - page 105

Notes:
- It is not possible to send commands to a remotely mounted st file. If your
working directory is remote, you must r | ogi n on relevant file server, to be
able to get access to the pipe.
- Take care to get write rights on your current working directory, else Stood
will not be able to create st file.
- To enable the named pipe, the following properties must be present in the
. st oodr c initidization file:

Server. Name: st

Server . Di sabl eSTShel | Pi pe: No

Additionally, a DDE port is aso initialized by Stood for remote control. This
mode is mainly used on Windows platforms, but may also be operated with
Unix environments. STShell instructions can be sent to the DDE port of
Stood.

Finally, Stood can operate as an http server. Please refer to 81.2.7 for further
details.

Associated to the capability to customize external tools, remote control modeis
the prefered way to let Stood interact with other tools in a software
devel opment environment.

page 106 - STOOD Administrator Manual © TNI Europe - May 2005

STOOD Administrator Manual © TNI Europe - May 2005 - page 107

* T'ni

Technology Innovation

www.tni-world.com
stood@tni-world.com

TNI Europe Ellidiss Technologies
Triad House Technopdle Brest-1roise
Mountbatten Court 115 rue Claude Chappe
Worall Street 29280 Plouzané
Congleton Brittany
Cheshire France
CW12 1AG
UK

+44 1260 291 449 +33 298 451 870

